

Institute of Neuroscience and Medicine INM-1

Investigation of histological brain sections at different scales with polarized light

Hendrik Wiese 25.3.2014

"Understanding the human brain is one of the greatest challenges

Brain Histology for PLI

whole brain fixation in 4% formalin (for at least 6 months) sectioning with cryostat microtome (70 μ m thickness)

blockface imaging

2500 sections

Large-area Polarimeter

Polarizing Microscope

Large-area Polarimeter

Polarizing Microscope

Large-area Polarimeter

one-shot image size: 2800×2080 pixel pixel size: 64 μm × 64 μm file size: 3 GB 15 min scan time / section tilting object stage

Polarizing Microscope

tiled image size: 100.000 × 100.000 pixel pixel size: 1.3 μm × 1.3 μm file size: 750 GB 12 hrs scan time / large section

Axer M. et al. (2011) Neuroimage & Front. Neuroinf.

Image Acquisition

Nerve Fiber Modell for Inclination Reconstruction

Workflow (simple)

Workflow (real)

Big Data and Supercomputing

Data for a slice at microscopic resolution: 750 GB

Big Data and Supercomputing

Data for a slice at microscopic resolution: 750 GB x 2500 sections

Data for a slice at microscopic resolution: 750 GB x 2500 sections

Need for suitable file storage system, data formats and visualization software

Need for high performance computing software for analysis and image registration

Institute of Neuroscience and Medicine (INM-1)

Markus Axer David Gräßel Anh-Minh Huynh Marcel Huysegoms Tim Hütz Stefan Köhnen Miriam Menzel Julia Reckfort Philipp Schlömer Martin Schober Guiseppe Tabbi

Jülich Supercomputing Center (JSC) Oliver Bücker Sven Strohmer Anna Westhoff Thomas Lippert

> Contact: h.wiese@fz-juelich.de m.axer@fz-juelich.de

Further Reading:

[1] Axer et al., "A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain", NeuroImage 54 (2011)

[2] Axer et al., "High-resolution fiber tract reconstruction in the human brain by means of threedimensional polarized light imaging", Frontiers in Neuroinformatics 5(34) (2011).