

October 17th, 2012 Polarisation & AGN, COST, Brussels Eduardo Ros (Univ. Valencia & MPIfR)

POLARISATION IN AGN JETS

Thanks to...

Contributions by

- Antxon Alberdi (IAA-CSIC/ES)
- Talvikki Hovatta (Caltech/US)
- Dan C. Homan (Denison/US)
- Tuomas Savolainen (MPIfR/DE)
- ...and many others

Jets in AGN

 Jets are formed in the immediate vicinity of SMBH in AGN

 Jets consist of charged particles trapped in strongly collimated, poloidal magnetic fields

Open question: how are jets launched and accelerated?

Jet acceleration and collimation

- Jets are accelerated within the first 1000
 R_S
- The magnetic field is responsible for accelerating particles at parsec-scales

 Following the synchrotron theory, the magnetic field produces polarised radio emission

Main science areas

Linear polarisation

- Provide magnetic field strength and orientation
- Oricular polarisation
 - Limitation by circularly polarised feeds
- Rotation measurement
 - Combining linear polarisation images at different frequencies
 - Issue: proper calibration and alignment

Rotating particles in the accretion disk may trigger the magnetic fields and play an important role in the jet formation

Polarisation as a Probe of Jet Physics

Iet Structure and Composition

- 3-D Magnetic Field Structure of Jets
 - Connection with SMBH/Accretion Disk System
- Low energy end of particle spectrum
 - Dominates Kinetic Luminosity of Jets:
 - Important for constraining particle accel. mechanisms
- Particle Composition of Jets
 - Electron-Proton?
 Electron-Positron?

 $N_{total} \propto 1/\gamma_{\min}^{2\alpha}$

Ν

Polarisation as a Probe of Jet Physics

Magneto-Hydrodynamics of Jets

- Field signatures of Oblique Shocks
- Time evolution of Field Structures
 - Compared to simulations
- Dependence on Optical Class
- Jet Environment
 - Jet Polarization as "Backlighting"
 - Nature of Faraday Screen on Parsec Scales
 - Scale Height
 - Relation to Jet Magnetic Field
 - o Are we seeing Narrow Line Clouds?

QSO 3C345

Fig. 12. Polarized intensity electric vectors $(\chi, \text{ length proportional to } p, 1 \text{ mas in the map is equivalent to 10 mJy/beam})$ overlaid on total intensity (I) contours $(3 \text{ mJy/beam} \times -1, 1, 2.24, 5, 11.18, 25, ...)$ and grey scale polarized intensity (p, grey scale up to the peak of brightness, 40.5 mJy/beam) images for 3C 345 at 5 GHz, epoch 1996.81. It is obvious that the electric vector is almost perpendicular to the jet at core separations from 3 to 7 mas.

Fig. 13. Summary of physical properties observed in the two regions of the parsec-scale jet of 3C 345. The values for α and m refer to our four observing frequencies (5, 8.4, 15, and 22 GHz), in general. Ros et al. A&A (2000)

Quasar 1055+018, $\lambda = 6 \text{ cm}$

Possible Field Order in Jets

E. Ros - COST Polarisation & AGN 2012

Field orientation

- Field in jet from accretion disk: helical
- VLBI observations: B parallel to jet, toroidal
- But...
 - Magnetic field tangled due to re-collimation shocks or external medium interaction
 - Relativity can make a toroidal field in the rest frame to look like poloidal in the observer frame
 - Faraday rotation flips the field angle, caused by to internal or external plasma
 - Shocks can compress B preferently perpendicular to jet: apparently toroidal

Main survey programs including polarisation

Program	λ	N _{sources}	N _{epochs} & Obs.	Ref.
Boston Univ.	7mm	35	50 (2007-now)	Marscher, Jorstad +
TeV Sample	7mm (+1.3/3.6cm)	7	5 (2006-now)	Piner+ 2010 ApJ 723 1150
MOJAVE	2cm	300	20 (1994-now)	Lister+ 2009 AJ 138 1874
MOJAVE 18/21cm	18/21cm	135	1 (2009-now)	Coughlan+'11
Bologna low-z	2/3.6cm	42	2 (2010-now)	Giroletti+'11
VIPS	6cm	1127	1 (2007)	Hemboldt+'08
VIPS subsample	6cm	100	2 (2010-now)	Linford+'11
CJF	6cm	293	3 (1990s)	Pollack+'03

Selection criteria: usually flux and spectrum based

Observed Linear Polarization in AGN

- Fractional Polarization
 - Cores ~ few percent up to 10%
 - Jet features ~ 5-10% up to a few tens of percent
- Orientation relative to jet: $|\chi \theta|$
 - Quasar Jets:
 - no clear relation (Cawthorne et al. (1993), Gabuzda et al. (2000), Pollack et al. (2003), Lister & Homan (2005))
 - BL Lac Jets:
 - excess near 0° (Gabuzda et al. (2000), Lister & Homan (2005))

Alignment of χ by opt. class

- MOJAVE result (see below)
- BL Lacs have the electric vector parallel to jet
- Quasars have a broader |χ-θ| distribution

BU Blazar Monitoring

- Study of 35 blazars at 43 GHz, observed monthly by the VLBA
- High spatial and time resolution, with polarimetry
- (Lack of) opacity: closer view the core region and the birth of new features traveling downstream
- Several studies presented individually in publications
- Calibrated data are made public

http://www.bu.edu/blazars/

BU Blazar Monitoring

3C279 3C454.3 3C2773 27.33.00 22 Jun 09 2009.57 2008.47 (Annor 27.34.00 2004-07 2009.62 16 Aug 09 til Sep (H 2009.62 2009.71 16 Sep 09 2009.71 16 Dct 09 2009.79 16 0 (3 0 9 0000 70 28 Nov 09 2009.81 28 Nov 09 2009.91 10 Jan 10 2010.00 10 Jan 15 2015.03 10 Feb 18 2010.11 10 Eeb 10 2011.11 6 Mar 10 2010.18 6 Mar 10 2010.18 53 May 10 2010.38 77 Apr 10 0046.97 14-Jun 10 19 May 10 2010.45 2010.38 1 Aug 10 2010.58 14.Jun 10 2010.45

18 Sep 10 2010.71

24 Det 10

2010.81

4 Dec 10

2010.80

2,84 11 2011.01

-2.

-5

101

-1

0

E. Ros - COST Polarisation & AGN 2012

1 Aug 10

2010.58

18 Sep 10

2010.71

24 Oct 10

2010.01

4 Dec 10. 2010.98

> Jan 11 2011.01

10 1009 1009 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.8

Jorstad et al. Fermi Symp 2011 arXiv 1111.0110

VLBI Imaging and Polarimetry Survey (VIPS) ● 1127 sources at 5 GHz One epoch, pre-Fermi era Operation Polarisation included Helmboldt et al. 2007 ApJ 658, 203 Followed by VLBA observations of 100 blazars (at least two epochs) – P.I. G.B. Taylor

VIPS Extension (*Fermi*-related)

- Median value in core fractional polarization is 3.5% for γ-detected and 4.4% for non-γ
- Brightness temperature of γbright higher than

Linford et al. (2011 ApJ 726 16)

non-γ

E. Ros - COST Polarisation & AGN 2012

Lister & Homan (Paper I, 2005)

24

MOJAVE program

- Milliarcsecond-resolution, full Stokes images
- Currently ~300 sources monitored
- Continuous long-term monitoring, good sensitivity, source-specific observing cadences → High-quality jet motions
- Large, well-defined sample
 Statistics, properties of the parent population
- Calibrated data are made public

https://www.physics.purdue.edu/astro/mojave/

Evidence for Helical/Toroidal Fields?

Gradients in Faraday Rotation Across Jets...

- Due to Toroidal field structures within jets or in a boundary layer surrounding them?
- Could they be due to external pressure gradients?

If Toroidal Fields...

- Role in Collimation & Acceleration
- Jets carry a current (where is it... how does it flow?)

17oct12

Rotation Measure Gradients

Asada et al. 2002

Multiple Scales and Epochs: Zavala & Taylor 2005; Attridge et al. 2005 with mm VLBI; Asada et al. 2008 TeV Blazar: Markarian 501 (Croke et al. 2010)

Other Jets: Gabuzda et al. 2004; Asada et al. 2008; Gomez et al. 2008; O'Sullivan & Gabuzda 2009; Mahmud et al. 2009; Asada et al. 2010 **Declination** (mas)

3C 120

Polarisation degree increasing with distance from core Jet interacts with a cloud at 2-3 mas. Dominant poloidal B-field.

Data consistent with helical field in a two-fluid jet model. Inner emitting jet and sheath containing non-

relativistic electrons.

Gómez et al. (2008)

MOJAVE RM results

Transverse gradients found in 4 souces

Hovatta et al. (2012)

E. Ros - COST Polarisation & AGN 2012

3C 273 RM

17oct12

3C 454.3 RM maps

Hovatta et al (2012)

Clear transverse gradient (see also Zamaninasab et al. in prep)

BL Lac & 4C 39.25 RM

Summary: AGN Science with Polarization O 3-D magnetic field structure of jets Role in collimation & acceleration of jets Connection with SMBH/Accretion Disk? • Low energy particle population Particle acceleration mechanisms Particle content & kinetic luminosity of jets Tracer of jet flow and hydrodynamics Shock, shear, aberration, etc... Probe of material + fields external to jets Sheath or boundary layers Narrow line region

Outlook

- Improvements in sensitivity by bandwidth and performance enhancements
- Improvements in resolution:
 - 86 GHz new calibration methods (see Martí-Vidal et al. 2012)
 - RadioAstron observations

Martí-Vidal et al. (2012)

Dank je!

Merci!

Gracias!