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[. Energy transfer from an AGN Supermassive Black Hole to the IGM, and
how to measure it — i.e. from an appropriate calorimeter

II. First measurement of a kpc-scale electric current in an extragalactic
Black-Hole powered jet

III. Propagation of CR’s through a magnetised intergalactic medium

II. Hasan Yuksel, LANL. Todor Stane . Ma , Ca
Philipp Kronberg, LANL. Univ. of Toronto
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Virgo A jet at high resolution:
VLBA., 15 GHz, epoch 2000

HPBW: 0.6 by 1.3 milli-arcsec

Field of View: 100 x 80 milliarcsec

Y. Y. Kovalev (MPIfR & ASC Lebedev),
R W L. Lister (Purdue U.),

D. C. Homan (Denison U.),

K. I. Kellermann (NRAQO)
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Sum of 23 VLBA images at 43 GHz
Veritas Collab,
NRAO VLBA M&7 Monitoring Team,

H.E.S.S. Collab. & MAGIC Collab., Science, 329, 444, 2009

~ M87 nucleus in the nearby Virgo galaxy Cluster, Dist. = 16.7 Mpc

HPBW: 0.2 milli-arcsec (v = 43 GHz)

BH Mass ~ 6x10° M Tg are < T INNERMOST STABLE ORBIT
Schwarzschild radius, R, ~ 118AU ~ 0.007mas = 0.68 /-days

1 mas = 0.06 pc

-5
RA Offset (mas)

—
10}




Energetics of intergalactic fields deriving from
central BH's

and
Probes of the thermal gas content of the giant lobes

Giant radio galaxies are the best calibrators of

BH energy input to the IGM (magnetic + CR)




Example of a GRG - 3C326

A G Willis and R G, Strom: Multdfrequency Observations of 3C 326

Willis, A.G., & Strom, A.G. A&A 62, 375, 1978
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Fig- 8 The dstribution of rotation mesvare over 3C 326 as computed from the 49 cm and 21 cm convolved data superposed upon
photograpd™ of the 49 cm total intensity. Note that 1o prodece a simple gnd of single dignt numbers we have subiracted integrated

moasures, whose derivation is described i the text, of +25rad m™* and + 20 rad m ™7 froes the values measured at individual sample
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Indications for distributed acceleration of CR’s within Mpc-sized (intergalactic)
radio lobe volumes

a “template” for widespread IGM CR acceleration??
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Freshly Kronberg, Wielebinski & Graham

accelerated, A&A 169, 63, 1986
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BH ( ) energy output (= 10°° ergs) is “captured” within a few Mpc,
compare with efficiency of
n ( ), # 10%o0f Mg,c? (not captured) appears
comparable to n (CR + B),

2147+816 giant radio galaxy

Analysis of ~ 70 GRG images
Kronberg, Dufon, Li, Colgate
ApdJ 2001

8 FRIl-like GRG’s, w. detailed,

multi-A obs. & analysis

Kronberg, Colgate, Li, Dufton ApJL 2004

*Willis & Strom, 1978,80

*Kronberg, Wielebinski & Graham.1986,

*Mack et al. A&A 329, 431, 1998

*Schoenmakers et al. 1998,2000

*Subrahmanian et al. 1996

*Feretti et al 1999

.Lara et al. 2000 AUI/NRAO/VLA image
*Palma et al. 2000 ¢




The energy story



Adopted frem Kroaberg, Dufion, U, ond Colgete, Apt 560:178 (2001)

Mg Dlack hole infall energy 10% ergs =M 02
BH

l R > Rg

Gionts -

(>0.67 Mpc) Mind the gap!!

Accumulated energy
(B?/81T + £cg) X (volume)
PdV work of from ~“mature” BH-powered

largest cluster radio source lobes
bubbles in CDJ

model (Diehl et al. 2008)

GRG’s
capture the highest fraction

of the magnetic energy
released to the IGM

Kronberg, Dufton, Li, &
Colgate,
ApJ 560, 178




Ihe Nature of X-ray Cavities 13
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Hydra cluster X-ray image:

Hydra
cluster e’ CDJ current-dominated
' MHD jet model
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Simulated magnetic tower jet/lobe 1n a cluster
environment
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IGM magnetic energy supplied by central galactic
black holes

Can be (globally) quantified

A global, observation-based calculation:

Average

BH denSity 5

(or Mg =100) < pg, >2x10° M | Mpc’
Gravitational energy
reservoir per BH 62 MB/'/




This leads to an average magnetic energy density, &g
supplied to the IGM

from supermassive black holes (SMBH).

if no B-dissipation over ~ a Hubble time

Smoothed-out SMBH magnetic energy reservoir

VoL -1
g, =1. 36x107" (%j (f jx F s X ﬂgﬂBH erg cm”
0.1 0.1 0.1 10 M@

Gives BBH 87e, —1.8x107 G

e Magnetic energy initially captured within galaxy filaments of LSS

Other observational tests for aiin the IGM




Stellar/SN-driven galaxy outflows




Outflow to IGM from the M82 starburst galaxy (3 Mpc distant)

VLA, All-config, 5 & 8 GHz, ~0.3”
W= resolution

Kronberg, P.P. Biermann, P.L.

Schwab, F.R. ApJ 246, 751, 1981.
and

Allen & Kronberg, 8GHz shown

Outflow halo:
Bhalo - 10“6

coherence scale
1-2Kkpc

\Retiter, H.-P, ¢t al.. ABAT282, 72411994,
orientation].
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NGC 4569 4.85 GHz Total power + Pol. int. B-vectoes
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FILLING OF INTERGALACTIC SPACE BY
EARLY STARBURST GALAXY OUTFLOWS
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Conclusion:

Galactic star/SN driven outflows a/one
can magnetize a significant
fraction of the IGM from z~12 — 0







Posterior indicators of AGN —produced
iIntergalactic <B>

Deep 1imaging of diffuse synchrotron radiation

Arecibo telescope (USA)
+
DRAQO synthesis telescope
(Canada)
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Dominion Radio Astrophysical Observatory
Penticton BC, Canada
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In 12 days, 1 full image within 9° circle at 408 MHz



COMBINED Arecibo-DRAO image,

now smoothed to 70’ (Arecibo) resolution
P. Kronberg, R. Kothes, C. Salter, & P. Perillat ApJ 659, 267, 2007

*Discrete sources removed,

*CMB + linear plane Milky Way
¥foreground removed

«Strongest discrete sources
re-overlaid (yellow ellipses)

e Black contours at 1.4, 1.9, 2.4,
"W2.9 3.4, 3.9, 4.4, 10, 40K

e 0 = 250mK at 430 MHz

Jl Region A (2 — 3 Mpc in extent)
requires a distributed “fresh”



Another DRAO-Arecibo field in the Perseus-Pisces
Supercluster
Kothes, Kronberg, Perillat, Salter (to be published)

(Giant radio source NGC315)

Pt Mcensson (J2000)

e rms noise ~250 mK
(limit 1s set by
DRAO resolution)

*Newly discovered
deep “holes” for

CMB investigations
at /2 1000

DRAO Int.
beamshapes show
removed discrete
sources

*(Note: no trace
of residual diffraction
lobes!)



RM search for beyond clusters: <B> in LSS filaments

Xu, Kronberg, Habib, Dufton. ApJ 2006, 637, 19

4> SMOOTHED

FARADAY
ROTATION

..... = Perseus-Pisces
supercluster

GALAXY COLUMN
DENSITY

& At : \ (Method #2:

- s e T 2MASS, HEALPix)
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Optical galaxy counts vs. RM plots
for the Perseus-Pisces supercluster chain

Two optical methods used: Y. Xu, P. Kronberg, S. Habib & Q. Dufton ApJ 2006

Weighted path length vs RM
(This used the CfA2 galaxy survey)

from 3-D Voronoi-tessilated IGM filament volumes
(. 3-D spectroscopic Z's are measured).

also from 7°-smoothed data

7°-smoothed galaxy column
density VSRM

(used the 2MASS galaxy survey)
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Plasma experiments on the largest
accessible scales

Plasma parameters in a radio galaxy (3C303), and the
first jet current measurement

 particle acceleration sites on large scales

e Magnetic organization on kpc-Mpc scales




Knots and Hotspots of 3C303 (z=0.141)

VN and X-Ray (CHANDRA)

J Kataoka, P Edwards,

F2 Kronberg, Can.J. Phys 64, 449, 1966 M. Georganopoulos, F. Takahara

P Leahy & R. Perley, Astr. J. 102, 537, 19971 & S. Wagner A&A 399, 91, 2003

Wi e

VLA image X-ray image

1.3”resolution




3C303 1.4GHz
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How to estimate the jet current? --
required measurements:

1. 5 arcsec resolution, sensitive images at v,1, v3

2. Faraday RM image of the jet -- at a common angular resolution

3. X-ray image ~ kev range —gives n"

4. Need the surrounding sky RM’s to establish the RM zero-level
I.e. subtract <RM,sqng sources™ from the RM's in the jet image




3C303 4866 MHz 0.35” angular resolution
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P M87 jet on the physical scale of 3C303

M87 knot cocoons are ~ 12,000 times smaller than those in 3C303!
SMBH-powered jets are very scale-independent systems!
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Plasma Diagnostics of the 3C303 et
Lapenta & Kronberg ApJ 625, 37-50, 2005

(1) <(Total energy flow rate)> = ET . /t = 2.8x1043 T, erg/s

(2) Total radio — X-ray luminosity of the jet = 1.7 x 1042 erg s

@)

(1)

(3) Measure knots’ synchrotron luminosity & size (D) —

(4) From the Faraday rotation isolated in the knots, RM « n,,, x X Dynot

gives n,, in knots for 3C303) - n,, ~ 1.4x10° cm (a1 extragalactic density!)




Plasma parameters in the 3C303 jet

With |Bl and n,, measured in the 3C303 jet,
nkT

/e

|B| ~ 1 mG in the synch. radiating jet knots (cocoons),
over ~ 1kpc

~ 10> Tg confirms very little thermal
plasma— an intergalactic level density!

Plasma 3 =

Lapenta & Kronberg ApJ 2005

Consistent with a magnetically confined, Poynting flux driven jet:
Absence of evidence for mass-loading, -- which 1s otherwise required to carry

a particle beam energy flow.




Analysis leads to straightforward clectrical circuit
analogues to describe BH energy transfer into " empty’’ space

KLLC ApJL 2011 and R.E.V.L. Lovelace S. Dyda & P.P. Kronberg

Proc. Xth International Conf.on Gravitation, Astrophysics, and Cosmoloqy.
Ed. Roland Triay 2012

calculations for 3C303:

« P~ 107 watts of directed e.m. power

- [=3.3x10'8 ampéres of axial current
VRM sign gives / direction — in this case away from the BH

« Jet’s electrical properties:
V,= 2.7x 102V (MKS)
I[,=3x10" A (MKS)
Z,=30p ohms (MKS)
where p = U,, <1, and 1, 1, are the inner & outer transmission line radii.




AGN jets

viewed as VHE particle acceleration machines

3C303 4866 MHz
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UHECR acceleration
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knot parameters
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Future
Opportunities for diagnosing jet
magneto-plasmas

* 1. On pc scales near 7 of the SMBH

VLBI up to Earth’s dia & beyond

e 2.0n kpC-MpC scales Interferometers up to /00 km
1.e. beyond the EVLA !!




Future instrumental directions and opportunities

Essential improvements required
For both (1) VLBI and (2) VLA-scale arrays:

* Need angular resolution 6x to 50x better, with optimum sensitivity

e Need Multi-frequency polarimetry & good frequency coverage




1. PARSEC SCALE jet launching regions

-- 2> 6 x more better VLBI resolution OFTEN REQUIRES SATELLITE-
BASED VLBI

-- increase observing frequency to 90GHz (3mm) and 120GHz (1.8mm)
-- more large radio telescopes in the array, longer baselines

--extend bandwidths

--measure and calibrate all Stokes’ parameters




M87 jet 23-frame time sequence
Craig Walker et al., J. Phys Conf Ser. 131, 012053
http:iopscience.iop.org/1742-6596/131/1/012053

m ool Dol = 4

Comon
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2. KPC SCALE jets: (e.g. 3C303)

1. >15x more resolution needed transverse to the jets
i.e. 35km EVLA needs to be ~ 500km, to the “EVLA-2"
not yet implemented

2. Wide freq coverage at much greater sensitivity — now achieved
(The new EVLA “WIDAR”, post-2011, correlator)

1. would be possible with the proposed EVLA-2,

-- " The New Mexico Array”-- 6 — 10 more EVLA dishes covering
several hundred km, Cost: ~ $150-200M)

The EVLA-2 proposal was recently shelved or withdrawn

-- For Faraday RM imaging, we also need v < 1 GHz, probably down to
~300MHz, to explore 3-D magnetic field structures in lobes

at “Faraday depths”(RM) < 10rad m2.




Near-future instrumental capabilities are in good
shape

(EXCEPT FOR ANGULAR RESOLUTION).

Upgraded Arecibo telescope,
LOFAR
X-ray telescopes (Chandra and successors)

TeV y-ray telescopes




Cen -A, AUGER + HiRes

A new analysis and
conclusions on:

nearby EGMF strength & structure

UHECR composition




The radio jets of

Cen A Basics .

| = 309.5° b =19.4° energy from the
Distance : 3.8 £ 0.1 supermassive black hole at

Mpc the center of the galaxy
and also possibly
Angular Size ~ 8° accelerates UHECR

Size ~ 0.6 Mpc particles.

= MNerBasem s i
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The Rodio Structure of Centourus A
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firas, 14, e

Angular Size ~ 8°
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Fig. 3. Radio maps of Centaurus A, lughlighting the vanous components of the radso source introduced
_— > Sect. 2.1. From Bums ct al. (1983).




The arrival directions of 69 UHECR events detected by Auger (black circles) in Galactic
coordinates. Pairs of events within 5° are shown with blue circles.

A circle of 18° is shown around the radio galaxy Centaurus A. The estimated density
distribution of UHECR events are shown with colored contours




Cumulative angular distribution of events around Cen A

t
0%-30?° 60° 90° 120°
10— ' ' ‘ After weighting for

WL | exposure, the expectations
0.8 L : for

0.6 ] « A purely isotropic
; ‘ distribution of all events

Clellle)

« A model of 10 events
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degree Gaussian

L _ ] distribution around Cen A --
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» Trajectories of
UHECRSs (coloured
according to their
energies) as they
leave the source and
propagate through
the intergalactic
magnetic field.

; 4 ~ prts --
58 E\i (FAPNES « Lower energy

S .
'.;,
-' “"""4 4 ; articles experience
O/l NN oo

;" WUyan JPS ; / much stronger
deflections

compared to higher
energy particles

5x10"% eV | | 5x10%° eV



To understand the angular distribution of events seen by
Auger, we first look for a range of EGMF parameters that can
produce the observed spread of ~ 10° for UHECRSs arriving
from Cen A:

Analytically: A < d
C

5rms = 530 \/ Brms \V; dAC /E
I'lllS - I'lllS/\/_

A >d

6av ~ 530 \/ 2/3Bnnsd/E

0~ (01+06n)/" N4

av

~ 53°/1/6 Bis (d/E) ((Ac/d)”/2 + 1) &

we compute 8 numerically, utilizing a fourth-order Runga-Kutta method to solve

equation of motion, keeping the step size small in comparison to both the minimum
scale of magnetic field variation, and Larmor radius




The mean values of 60 EeV cosmic-ray angular distributions
around Centaurus A as a function of field strength and
coherence length

» Shown are the
expectations from
analytical expressions
(dotted lines)
compared to the our
simulation (solid lines)

« Maximum Lensing
appears on shaded
band
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The local Intergalactic Magnetic Field

« Inferred range of extragalactic
magnetic field parameters that
are compatible with.

1. the average angular
aistribution of events 8-18 °
from Cen A (solid lings)

2. the spread of events among
themselves is < 4 ° (dashed
ling)

« The latter condition disfavors
scenarios in which events are
shifted from the source position,
yet remain tightly clustered




Some Implications:

« A>10 nG field extending at a few Mpc around the Milky Way results in a
““screen” scattering all UHECRSs that eventually reach Earth:

 each UHECR would then be expected to have a minimum amount of
deflection due to this field alone

it would increase the difficultly of making associations with more
distant sources

 this would introduce a minimum time dispersion, important for
transient sources, such as gamma-ray bursts

« Even if protons dominate the composition at high energies, heavier nuclei
may still be present:

« with a solar composition and acceleration based on nuclear charge,
the number of events near Cen A would suggest 1 or 2 He nuclei in
the excess

» the highest energy event seen by Auger (142 EeV) is within 30

energy and greater scattering exp



Concluding Remarks

The UHECR anisotropies discovered by the Pierre Auger Observatory
give the potential to finally address both the particles' origins and
properties of the nearby extragalactic magnetic field (EGMF)

We examine the implications of the excess of >60 EeV events seen
towards the nearby radio galaxy Centaurus A

If Cen A is the source of these cosmic rays, the angular distribution of
events constrains the EGMF strength within several Mpc of the Milky
Way >10 nG. This is important for:

— UHECR scattering from more distant sources
— time delays from transient sources
— The use of magnetic lensing signatures to attain tighter constraints

Our conclusions suggest that the observed excess is either

— a statistical anomaly
or
— the local EGMF must be much stronger then previously thought
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