Polarization, magnetic fields and radio galaxies in galaxy clusters

Gianfranco Gentile

Universiteit Gent / Vrije Universiteit Brussel (Belgium)

Outline

- Part 1: Introduction

- Part 2: Perseus cluster

- Part 3: Centaurus cluster

- Part 4: MACS J0717.5+3745 cluster

Part 1:

Introduction

Radio galaxies

R. Perley, C. Carilli & J. Dreher, NRAO/AUI

Radio galaxies come in all kinds of shapes

Radio galaxies in galaxy clusters

Galaxy cluster MS 0735.6+7421 NASA/CXC/Univ. Waterloo/B.McNamara/Birzan

Radio lobes fill the cavities blown by the radio jets

Radio halos

Radio halo:

- Diffuse radio emission in a cluster
- Not associated to individual galaxy
- Signature of merger of clusters

Galaxy cluster Abell 2163 Contours: radio – Colour scale: X-rays Feretti et al. (2001)

Rotation measure

Kronberg 2002

$$\frac{\Delta \psi}{\mathrm{rad}} \propto \lambda^2 \int n_e H_{\parallel} dl = \lambda^2 \times (RM)$$

Observ. at different frequencies → rotation measure

- → orientation of electric and magnetic field
- \rightarrow from assumptions on n_e \rightarrow intensity of magn. field

Rotation measure

Rotation measure

Kronberg 2002

$$\frac{\Delta \psi}{\mathrm{rad}} \propto \lambda^2 \int n_e H_{\parallel} dl = \lambda^2 \times (RM)$$

Observ. at different frequencies → rotation measure

- → orientation of electric and magnetic field
- \rightarrow from assumptions on n_e \rightarrow intensity of magn. field

Part 2:

Perseus cluster

Perseus cluster

- Most X-ray luminous cluster in nearby Universe
- Cavities created by radio galaxy Perseus A (aka 3C 84 and NGC 1275)
- Shocks and ripples in the X-ray image

Perseus cluster

Taylor et al. (2006):
 Very Large Baseline Array (VLBA) observations at 4 frequencies: 5, 8, 15, 22 GHz
 Including polarisation

Rotation measure ≈ 7000 rad m⁻² (high)

Gradient ≈ 10% on scales ≈ 1 pc

greyscale: lin. pol.; contours: total intentisty

maps: $\approx 40 \times 25 \text{ mas} \approx 14 \times 9 \text{ pc}$

Perseus cluster

- Taylor et al. (2006):

To explain gradient on such small scales:

Faraday screen: consistent with ionized gas filaments

Magnetic fiels organised on scales < 10 pc

Part 3:

Centaurus cluster

- Nearby X-ray bright galaxy cluster
- Complex interaction between X-rays and radio galaxy PDS 1246-410 (NGC 4696)

- Taylor et al. (2007): Very Large Array (VLA) observations at 5 and 8 GHz – A array

beam: 1.2 x 0.4 arcsec (250 x 80 pc)

Colours: rotation measure – Contours: total intensity

- 400 pc: typical size of regions where
 - rotation measure is enhanced
 - rotation measure gradients are enhanced
 - fractional polarization is reduced

Polarized gas filaments not responsible: scales too small: complete depolarisation would be seen

- 400 pc: typical size of regions where
 - rotation measure is enhanced
 - rotation measure gradients are enhanced
 - fractional polarization is reduced

Soft X-rays: ok

Required magnetic field for enhancement $\approx 25 \mu G \approx$ equipartition inside the lobes

Part 4:

MACS J0717.5+3745

MACS J0717.5+3745 cluster

- -z = 0.55
- Very complex system: one of the most disturbed systems
- New radio data at 1.4 and 5 GHz with the VLA (B, C, and D arrays)

Colours: X-rays

Contours: radio 1.4 GHz (source "F": foreground source)

high resolution radio

low resolution radio (→ diffuse radio halo)

MACS J0717.5+3745 cluster

- Lensing \rightarrow mass distribution \rightarrow Most massive system in 0.5< z<1.0 range (\approx 10¹⁵ M_{sol})

- Is such a high mass expected in ΛCDM?

Zitrin et al. (2009): probability $\approx 10^{-7}$

Waizmann et al. (2012): probability ≈ 0.11-0.42 accounting for uncertainties on cosmolog. param.

≈ 150 kpc Zitrin et al. 2009

MACS J0717.5+3745 cluster

- Radio halo: radio power: 1.6 x 10²⁶ W Hz⁻¹: most powerful observed
- Polarised emission from diffuse radio halo → magn. field organised on large scales
- Structure A: filament or relic? Filament: continuity of polarisation emission between structure A and diffuse halo

Conclusions

- Perseus cluster: small-scale (10 pc) rotation measure gradients
 → Faraday screen: ionised gas filaments?
- Centaurus cluster: larger-scale (400 pc) rotation measure structures:

 → Faraday screen: X-ray gas?
- MACS J0717.5+3745 cluster:
 - one of the most disturbed systems (merger of 4 subclusters?)
 - very powerful radio halo
 - polarised emission from the radio halo → magnetic field fluctuates
 on scales ≈ 130 kpc