Improving black hole mass measurements in quasars: characterizing the structure of the broad line region gas

By Jens Juel Jensen, Dark Cosmology Centre University of Copenhagen

Outline

- How do we estimate black hole masses?
- Why is the velocity field so important?
- Improving the line width measure
- Polarization as an inclination measure?

What can M_{BH} tell us about?

- Physics of active galactic nuclei ightarrow
- Physical conditions in the early Universe ightarrow
- Galaxy formation and evolution ightarrow

A simple model for AGNs

Broad Line Region Fast moving gas **Black Hole**

Accretion Disk Continuum emission

Obscuring Torus

Determining the virial mass

- Virial mass: $M_{BH} = f * R * V^2 / G$
- V from width of emission lines

Determining the virial mass

- Virial mass: $M_{BH} = f * R * V^2 / G$
- V from width of emission lines

- R_{BLR} from
 - Time lag

 (Reverberation mapping) or
 - 2. Luminosity (Single epoch masses)

100

10

104

1042

1043

Peterson (2001)

Luminosity

1044

Averaaed H β Lags

1046

1047

1 0 4 5

Uncertainties

- 0.5 0.6 dex in M_{BH} for single epoch masses
- R_{BLR} L relationship is tight, only ~ 0.11 dex in intrinsic scatter
- Uncertainty dominated by our lack of ability to measure the true velocity field of the BLR
- Two of the main sources of uncertainties on velocity field:
 - Measuring emission line widths in (noisy) data (my work)
 - Unknown inclination and geometry of BLR (Polarization?)

Improving the emission line width measure

- 18 high S/N spectra (H-beta and CIV)
- 9 S/N levels between 1 and 50 per pixel
- 500 degradation realizations
- Spectral decomposition and line width measure for each degraded spectrum
- Compare accuracy and precision of FWHM, line dispersion and IPV width
- Measure directly on data and on smooth functional fits

 Goal: To obtain the most accurate and precise line width measure that is simple to measure in a automated fashion

Results of my work

- FWHM is strongly affected by noise, not accurate at S/N < 20 per pixel
- Line dispersion is not accurate at S/N below 10 per pixel
- With IPV, the typical accuracy and precision is within 0.01 dex and 0.11 dex at S/N \geq 5 per pixel

Results of my work

- FWHM is strongly affected by noise, not accurate at S/N < 20 per pixel
- Line dispersion is not accurate at S/N below 10 per pixel
- With IPV, the typical accuracy and precision is within 0.01 dex and 0.11 dex at S/N ≥ 5 per pixel
- IPV is most robust to noise and in addition easy to measure in an automated fashion
- Measuring on smooth functional fits introduces new systematics

Effects of unrecognized absorption

- Add narrow line absorption prior to degradation
- Absorption is very hard to detect in degraded spectra
- Absorption leads to systematic biases
- Conclusion: need high S/N and high resolution data to be able to account for absorption

Offset of > 0.2 dex in M_{BH} due to absorption alone

Uncertainty due to inclination

$$\Delta V_{\rm obs} \approx \left(a^2 + \sin^2 i\right)^{1/2} V_{\rm Kep},$$

- a can be H/R of disk or $V_{\text{TURBULENT}}$ / V_{KEPLER}
- i is inclination of disk. Face-on: i=0°

$$V_{Kepler} = \frac{V_{Obs}}{\sqrt{(a^2 + \sin^2 i)}};$$
$$M_{BH} = f \times RV_{Kepl}^2 / G$$

а	inclination	V _{KEP} /V _{OBS}	(V _{KEP} /V _{OBS}) ²	
0.1	10	5	25	
0.1	80	1	1	
0.3	80	1	1	_
0.3	60	1.1	1.2	l
0.3	50	1.2	1.4	
0.3	45	1.3	1.7	
0.3	40	1.4	2	
0.3	30	1.7	2.9	
0.3	20	2.2	4.8	
0.3	10	2.9	8.4	

If 0.1 < a < 0.3 and inclination is unconstrained:

ΔM_{BH} can be up to a factor of 25!

Collin et al. 2006

Uncertainty due to inclination

$$\Delta V_{\rm obs} \approx \left(a^2 + \sin^2 i\right)^{1/2} V_{\rm Kep},$$

- a can be H/R of disk or V_{TURBULENT} / V_{KEPLER}
- i is inclination of disk. Face-on: i=0°

а	inclination	V _{KEP} /V _{OBS}	(V _{KEP} /V _{OBS}) ²
0.1	10	5	25
0.1	80	1	1
0.3	80	1	1
0.3	60	1.1	1.2
0.3	50	1.2	1.4
0.3	45	1.3	1.7
0.3	40	1.4	2
0.3	30	1.7	2.9
0.3	20	2.2	4.8
0.3	10	2.9	8.4

$$V_{Kepler} = \frac{V_{Obs}}{\sqrt{(a^2 + \sin^2 i)}};$$
$$M_{BH} = f \times RV_{Kepl}^2 / G$$

T7

Assume a = 0.3: $\Delta i \sim 70^{\circ} \rightarrow \Delta M_{BH} < 8.4$ $\Delta i \sim 30^{\circ} \rightarrow \Delta M_{BH} < 4.2$ $\Delta i \sim 20^{\circ} \rightarrow \Delta M_{BH} < 2.4$

Collin et al. 2006

Issues to be resolved

- How accurately can we measure the inclination from polarimetry? We only need $\Delta i = 20^{\circ} 30^{\circ}$.
- How accurate an indicator of the BLR inclination is the inclination obtained by polarization?
- How demanding are these observations in terms of observation time and spectral (spatial?) resolution to be reliable?
- Compare with inclinations from radio observations:
 - Is radio tracing the BLR inclination?
 - How often is the radio inclination aligned with the polarimetric inclination?
- How does the above points change if we look at the statistics for large samples of objects?