Polarimetric Techniques & Technologies 24-28 March 2014

Polarization Modulators based on Liquid Cristal Variable Retarders for space instrumentation

Alberto Alvarez-Herrero on behalf of the INTA team

Space Optical Intrumentation Area Instituto Nacional de Técnica Aeroespacial

Public institution Headquarters: Torrejón de Ardoz (Madrid) Employees: ~1200 -

Space Optical Instrumentation Area OPTICS for SPACE

Engineering Develop instrumentation • Optical metrology

Science Knowledge Innovation

Outline

- Introduction
 - Motivation
 - Goal
 - Background

- Solar Orbiter mission: SO/PHI and METIS instruments
- LCVRs validation for Solar Orbiter
- Progress in the characterization and design
 - Temperature behavior
 - Dispersion laws
 - High birefringence LC: repeatability
 - Capacitance
 - Design
- Conclusions

Motivation

Liquid Crystal Variable Retarders is a well-know technology for ground applications and currently in use by many instruments.

During last 10 years have undergone an important development driven mainly by the fast expansion of the LCDs.

Space applications

Alternative to the traditional rotary polarizing optics

- Mass reduction
- Volume reduction
- To avoid the utilization of mechanism

Space industry Conservative \leftrightarrow innovation • Resources are very limited

• The risk of a mechanical failure should be minimized

Goal

Solar Orbiter will be the first space mission using LCs for polarimetric measurements:

- **METIS :** Multi Element Telescope for Imaging and Spectroscopy \rightarrow coronagraph
- **SO/PHI:** Polarimetric and Helioseismic Imager

 \rightarrow solar magnetograph

- High sensitive polarimeter (<10⁻³)
- High resolution spectrometer (<100mÅ)
- Diffraction limited Imager(<1 arcsec)

Constrictions

- Mass < 33kg
- Power < 31 W
- Harsh Environmental Conditions : space 0.28 AU
- Reliability: ground, cruise and operation >11 years

INTA background and future

SUNRISE mission

Start

IMaX instrument:

Scientific goals Technological precursor for Solar Orbiter

SO/PHI and METIS instruments

Scientific goals Technological goal: 1st space polarimeter based on LCVRs

Polarimeter for testing IMaX PMP

Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on LCVRs, N. Uribe-Patarroyo, A. Alvarez-Herrero, V. Martínez Pillet (2012) Simulating optical and environmental conditions

Validation of LCVRs for Solar Orbiter

ESA contract No.22334/09/NL/SFe

GOAL: "this activity aims at increasing the relevant technology readiness level in Europe from TRL4 "Component Validation in Laboratory Environment" to TRL5 "Component Validation in Relevant Environment" by providing a significant step towards full space qualification of high-performance LCVRs for the Solar Orbiter mission."

LCVRs under study

LC Type	Sym bol	Comment	Alignment	Glass	Manufac turer	LC mixture	Δn	∆n 20ºC/ 589nm	T-Range ^e C
APAN	1.Αα	anti-parallel nematic	Poly PI2545	fused silica	Arcoptix	ZLI-3700-000	medium	0.101	[<-30, +105]
APAN	1.Bα	anti-parallel nematic	Poly PIA2000	fused silica	Visual Display	BL006	high	0.285	[-20, +118.5]
APAN	1 .Α β	anti-parallel nematic	Poly PI2545	fused silica	Arcoptix	MLC-6025-000	low	0.084	[-40, +103]
APAN	1.C	anti-parallel nematic	Poly PIA2000	SF57	Visual Display	BL006	high	0.285	[-20, +118.5]
HAN	4.A	hybrid aligned nematic	Poly Pl2545	fused silica	Arcoptix	MLC-6610	negative	0.0996	[<-30, +79.5]
Dual APAN	5.A	dual anti-parallel	Poly PI2545	fused silica	Arcoptix	MDA-98-1602	high	0.267	[-20, +109]
ALCVR	6.A	achromatic	Poly PI2545	fused silica	Arcoptix	BL006 + MLC-6025-000	high+lo w	0.285/ 0.084	[-20, +118.5] + [-40, +103]

Validation of LCVRs for Solar Orbiter

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Requirements

Indicators

Measurements

Functional & Performance From the instruments to fulfill scientific requirements

Others Outgassing, physical, operational...

Test campaign

Ionizing radiation tolerance (Gamma)

>75krads (100krads)

Protons radiation tolerance

fluence (60 MeV)> 1.39 10¹¹ p+/cm² (2.78x10¹¹ p+/cm²) fluence (80 MeV) >1.08 10¹¹ p+/cm² (2.16 10¹¹ p+/cm²)

UV radiation tolerance

1.50 ESH 200-400 nm 1.00 ESH 160-200nm

Vibration/Dynamic test

Random vibration Sine vibration Shock (>3000g)

Outgassing test

TML < 1%, CVCM <0. 1%

Thermal-Vacuum test

Operational Temperatures [-20^e,+60^e] Non-operational Temperatures [-40^e,70^e]

Conclusions from the validation technology activity

- 1. Considering the different characteristics of all the cell types tested and the results obtained, the general conclusion is that the LCVRs is a valid technology for a Polarisation Modulator Package in the Solar Orbiter environmental conditions.
- 2. The cell type with better performance is the $T1A\alpha$ due to its repeatability, robustness and good behaviour in simulated space conditions.
 - Response time should be reduced optimizing the thickness or the modulation scheme.
- Also the cells based on the LC mixture BL006 are good candidates (TBα and T6Ax.1) because these high birefringence LCs provide low response times and high stability against UV radiation.
 - Repeatability issues should be clarified.
- Because the knowledge of the retardance versus voltage values is critical for the well-working of the polarisation modulation package, <u>an in-flight calibration of</u> <u>the PMP is strongly recommended</u> in order to prevent possible small changes of the optical retardance of the LCVRs during the mission.

SO/PHI and METIS

Optimizing the modulation efficiencies following J. C. del Toro Iniesta, M. Collados (2000)

METIS PMP

Two anti-parallel nematic (APAN) LCVRs oriented with their fast axes parallel with respect to each other but opposite molecular tilt angle followed by a linear polarizer at 45° with the fast axes of the LCVRs.

Wide acceptance angles

SO/PHI PMP

Two anti-parallel nematic (APAN) LCVRs oriented with their fast axes at 45° with respect to each other followed by a linear polarizer aligned with the fast axis of the first LCVR.

PMP design

NOTE: The mechanical design of the PMP main structure for METIS changea respect to PHI PMP in order to reuse the same LCVRs including kapton cables

STM prototype

STM prototype

Thermal behaviour

LC measurements (out of the cell) Abbe refractometer, model 60/HR

$$\Delta n = \Delta n_o \left(1 - \frac{T}{T_c} \right)^{\beta}$$

J. Li, S. Gauzia, S.-T.Wu (2002)

Predominant effect. It allows to model the cells thermal behaviour at different voltages from the ellipsometric measurements

PT&T Leiden, March 24-28, 2014

High temperature tests

Reversibility from the clearing point

Dispersion law

LC measurements (out of the cell) Abbe refractometer, model 60/HR

Variable Angle Spectroscopic Ellipsometry N. Uribe-Patarroyo, A. Alvarez-Herrero (2009)

PT&T Leiden, March 24-28, 2014

Alberto Alvarez Herrero Instituto Nacional de Técnica Aeroespacial

Repeatability of high birefringence LCs mixtures

Instituto Nacional de Técnica Aeroespacial

PT&T Leiden, March 24-28, 2014

Repeatibility of high birefringence LCVRs

Oscillations amplitude vs. retardance 70C

The oscillations amplitude

- increases with V
- Increases with T
- Decreases with thickness
- Increases with the area
- Increases with the birefringence

Capacitance measurements

Critical issue for the electronics

The results are in agreement with Lo, Kuang-Yao; Shiah, Chi-Ching; Huang, Chia-Yi (2006)

Qualification plan

Similar for the polarizer **2014**

Screening (A+B+Z)

LCVRs provision

(A+B+Z)

- Inspection of the cells
- Identification of the cells
- Functional tests before burn-in
- Burn in 168 h at 80°C (high vacuum)
- Functional tests after burn-in
- Calculation of cells discarded. Comparison with PDA (Percentage of defective allowable)

Qualification plan

- (A) a. Environmental Tests: 1. Vibrational Test
 - 2. Proton irradiation test
 - 3. Gamma irradiation test
 - 4. UV irradiation test
 - 5. TVTNonOp and TVTOp test
- b. Functional tests after the
- environmental tests

Life test campaign is also planned but not included here. TOTAL: 50+50 cells

Defective cells

discarded

(Z)

Conclusions

The technical development activity of the LCVRs for Solar Orbiter is welladvanced. The technology has been validated in relevant environment (TRL5). Additional characterizations and tests have been carried out obtaining positive results. The design has been frozen and the flight models are being manufactured.

Milestones

- Qualification and life tests campaign: 2nd half 2014
- PMP Elegant BreadBoards: September 2014
- PMP Qualification Model: December 2014
- PMP Flight Model: April 2015
- PMP Spare Model: June 2015

Thanks to

The INTA team, specially to:

- Pilar García Parejo
- Néstor Uribe-Patarroyo
- Raquel López Heredero
- René Restrepo

The SUNRISE and SO/PHI consortium: IAC, IAA, GACE, UPM, UB, MPS, KIS, HAO, IAS...

INAF, Silvano Fineschi, G. Capobianco ESA, Ilias Manolis

Ministerio de Economía y Competitividad de España

