LyNaCoPo: the observation of the magnetic field of the solar corona through a nano-wire polarizer

Federico Landini^a, Marco Romoli^b, Maurizio Pancrazzi^a, Cristian Baccani^b, Mauro Focardi^a

Dipartimento di Fisica e Astronomia b

Pencil Line of the observation of the magnetic field of the solar corona through a nano-wire polarizer

Federico Landini^a, Marco Romoli^b, Maurizio Pancrazzi^a, Cristian Baccani^b, Mauro Focardi^a

Dipartimento di Fisica e Astronomia

b

Outline

- Investigation of the Solar Corona magnetism through the HI Ly α linear polarization measurement
- PeNCIL: explorative project for a compact coronagraph optimized for the ${\rm Ly}\alpha$
 - Optical design and performance
 - The nano-wire polarimeter
- SCOUT: the facility to calibrate the polarimeter

Magnetic field in corona

- The magnetic field is the driver of the structure, dynamics and the energetics of the solar corona
- But it is measured mainly at the solar surface and is poorly known in the corona itself
- In fact it is not trivial to infer the magnetic field in corona: different observing techniques and a lot of modeling to interpret the results and remove LOS effects are needed

The Hanle effect (resonant lines)

х

Ζ

Strong B

Key parameter:

$$\Omega = \omega_L \cdot \tau$$
 \propto B

(τ =1/A transition mean lifetime)

Regimes

- $\Omega >> 1$ strong field
- Ω << 1 weak field
- $\Omega \approx 1$ H.E. maximum sesitivity

$$\frac{p}{p_0} = \frac{1}{\sqrt{1+4\Omega^2}}$$
$$\varphi = \frac{1}{2} \cdot \arctan(2\Omega)$$

"Margherita"

z

Strong magnetic field (Ω >>1) with the relative polarization pattern ("margherita")

Intermediate magnetic field ($\Omega \approx 1$) with the relative polarization pattern ("rosetta").

h

LOS

November 6th, 2014 - Toulouse

PeNCIL

Hanle effect sensitivity

(Min. Detectable Rot. Angle) $\Delta\beta \simeq \Delta P/P$

 ΔP (Min. detectable Polariz.) ~ 1/signal-to-noise ratio

 $P \sim P_0/(1+Coll/Rad)$ $\Delta\beta$ [rad] $\sim 0.88 \cdot g_J \cdot B_{min}/A$

Fineschi et al, Proc. SPIE, 1999

Spectral line	λ (nm)	A (10 ⁷ Hz)	g _j	B (Gauss)
ΗΙLyα	121.6	62.65	4/3	10 ÷ 70
ΗΙLyβ	102.5	16.72	4/3	2 ÷ 20
ΗΙLyγ	97.2	6.82	4/3	1÷7
O VI	103.2	41.60	4/3	6 ÷ 50

$$B_{\min} = \frac{A \cdot [1 + \text{Coll} / \text{Rad}]}{P_0 \cdot \text{SNR}}$$

Courtesy of S. Fineschi

November 6th, 2014 - Toulouse

PeNCIL

Hanle effect sensitivity

Courtesy of S. Fineschi

November 6th, 2014 - Toulouse

PeNCIL

Constraints (i.e., what is needed?)

- A space-borne coronagraph (Lyα is absorbed by the Earth atmosphere) with FOV aimed at the inner corona
- A polarimeter working at 121.6 nm, suitable and reliable for a space mission (limit the use of mechanisms and motors)
- Good image quality: better to work on axis
- Weak signal: the minimum possible amount of optics
- Costs: keep everything compact (length 1 m) and light-weighted

An answer: PeNCIL

- PeNCIL: Polarimetry with Nanowires for Coronal Imaging of Ly α
- Explorative project of a compact coronagraph integrated to a polarimeter to measure the linear polarization of the Ly α 121.6 nm
 - Internally occulted refractive coronagraph optimized for the 121.6 nm emission line
 - Polarimeter based on a nano-wires polarizer and a piezo-electric modulated MgF₂ retarder

First step: the coronagraph

Classical Lyot coronagraph, with MgF₂ lenses

November 6th, 2014 - Toulouse

PeNCIL

Coronagraph characteristics

Description	Value	MCP Fiber optic taper (de-magnifying)
Focal length	1.09 m	
FOV	1.1÷ 2 $\rm R_{\odot}$ @ 1 AU	
F/number	f/19.5	
Entrance aperture	56 mm⊗	
Resolution	3.78 arcsec	HV supply
Total length	1 m	Screen + output window
Exit Window Filter Field lens Occulter		Filter + Field lens 5 mm Cocculting mirror Occulter support

November 6th, 2014 - Toulouse

PeNCIL

Federico Landini

FEE

21 mm

2.8 mm I

Coronagraph performance

PeNCIL

November 6th, 2014 - Toulouse

Coronagraph performance

Vignetting function

Second step: the polarimeter

- The same constraints hold good for the polarimeter as well
 - Work possibly on axis
 - Reduce the use of motors and mechanisms

The polarizer

On axis:

- Three reflection polarizer
 - Hard to align
 - Efficiency loss (3 reflections)

- Wire grid polarizer
 - Easy to align
 - Good efficiency

Courtesy: The Center for Occupational Research and Development, USA

November 6th, 2014 - Toulouse

- Light has been polarized using metal wire grids for over a century (mainly in the radio, IR and Visible)
- Example:

(to polarize microwaves)

Courtesy: Harvard Lecture Demonstration Services, USA

November 6th, 2014 - Toulouse

PeNCIL

- "As a general rule of thumb, the shortest operating wavelength of a WGP can work efficiently as a polarizer is about three times of the pitch." (Jian Jim Wang et al., Applied Physics Letters 90, 2007)
- In order to be effective at 121.6 nm a wire grid polarizer shall have a pitch of 40 nm: NOT TRIVIAL AT ALL!
- Nanotechnologies are needed

 The NANOPol project was funded by Regione Toscana (Italy) in order to retrieve such polarizers.

@121.6 nm	n	k	Penetration depth	T @ 10 nm	T @ 20 nm	T @ 25 nm
Au	1.265	0.967	10.0 nm	37%	14%	8%
Al	0.0419	1.13	8.6 nm	31%	10%	5%
Ті	0.86	0.85	11.4 nm	42%	17%	11%
Ni	0.948	0.833	11.6 nm	42%	18%	12%

November 6th, 2014 - Toulouse

November 6th, 2014 - Toulouse PeNCIL Federico Landini

Good lithography and deposition

Dramatic Lift-off!

A different technique is needed.

November 6th, 2014 - Toulouse

Wire grid polarizer: alternatives

 Reactive Ion Etching: it is a top-down technique, opposite to the bottom-up that have been used.

Wang (2007) obtained a ~70 nm pitch aluminum nanowire grid plate with full-wafer immersion interference lithography

 Block copolymers comprise two or more different monomer units, strung together in long sequences rather than randomly distributed

PeNCIL

R. Register group (Princeton, USA) is achieving polystyrene-poly (ferrocenylisopropylmethylsilane) templates with 35 nm pitch... but it is not conductive

November 6th, 2014 - Toulouse

Wire grid polarizer: alternatives

- On-going cooperations:
 - ICFO (Barcelona, Spain): they try to push the limits of their technique (Focused Ion Beam Milling) to reach 40 nm pitch
 - ASRL (Washington University, St. Louis, USA): with RIE they can routinely achieve a pitch of 160 nm, even directly on a detector pixelated mask. They try to push the limit down to the UV. Italian ministry funding on hold.

Third step: the retarder

- A piezo-electric modulated MgF₂ plate can work as a variable retarder.
- No experiment done so far on MgF₂ (some are planned in the first half of 2015), but "a block of a few cm in side length of common BK7 glass can be stressed enough by hand such as to introduce a quarter-wave retardation" (Christoph U. Keller, Utrecht University).
- Retardation (in waves): $\delta = \frac{1}{\lambda} \mathbf{K} \cdot \mathbf{d} \cdot \sigma$

σ (Pa)

K (1/Pa): stress optical coefficient

K of MgF₂ and BK7 is of the same order of magnitude.

Test and calibration set-up

SCOUT: Small Chamber for Optical UV Tests

PeNCIL

November 6th, 2014 - Toulouse

SCOUT

November 6th, 2014 - Toulouse

PeNCIL

SCOUT

Characteristics and performance

- Modular chamber (possible lenghts: 300, 600, 900 mm)
- Diameter: 400 mm
- Vacuum: 1.e-4 mbar from atmospheric pressure in less than 30 min (max dimension)
- Complete remote control (motors, pressure, temperature, cooling of PMT electronics, detectors, wavelength selection)

PeNCIL

Suggestions? Comments?

... thank you

November 6th, 2014 - Toulouse

PeNCIL