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Subject

Electromagnetic polarization is much more then Stokes vectors
and Jones or Mueller calculus...

Polarization is considered from a mathematical point of view.
In particular, the underlying group theoretical aspects are
exhibited.

Assumptions on the medium in which light travels:

• Linear
• Isotropic
• Reciprocal
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What is a group ?

A group is:

• a non-empty set S

• with a binary operation × : S× S→ S
• in which × is associative
• and a unity element 1 ∈ S such that g× 1 = g = 1× g,
∀g ∈ S,

• and ∀g ∈ S exists an invers element g−1 ∈ S such that
g× g−1 = 1 = g−1 × g.

Our group elements will be polarization transformations, usually
represented by matrices.
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Example of a group
Unimodular group in one dimension:

U (1) , {z ∈ C : |z| = 1} with× : complex multiplication.

Three observations:
(i) The elements can be written as

eiθ , θ ∈ R.

(ii) The resulting parameter, θ1 + θ2, is an analytic function of θ1
and θ2,

ei(θ1+θ2) = eiθ1eiθ2 .

(iii) The set U (1) describes a circle in C,

|z| = 1⇔ x2 + y2 = 1, (z = x+ iy).

Such groups are called Lie groups.
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Transversal electric field

The transversal electric field E, of a plane harmonic
electromagnetic wave with pulsation ω, wavenumber k and
propagating in the positive uz-direction, is of the form

E = Ax cos (kz−ωt+ ϕx)ux +Ay cos
(

kz−ωt+ ϕy

)
uy,

with amplitudes Ax ≥ 0, Ay ≥ 0 and phases ϕx, ϕy ∈ R.

It is convenient to use the complex representative ψ of the real
field E,

ψ =

[
ψx
ψy

]
,

with ψx , Axeiϕx , ψy , Ayeiϕy ∈ C. Complex representatives are
not unique, but only determined to within a scalar phase factor.



Transversal electric field

The transversal electric field E, of a plane harmonic
electromagnetic wave with pulsation ω, wavenumber k and
propagating in the positive uz-direction, is of the form

E = Ax cos (kz−ωt+ ϕx)ux +Ay cos
(

kz−ωt+ ϕy

)
uy,

with amplitudes Ax ≥ 0, Ay ≥ 0 and phases ϕx, ϕy ∈ R.

It is convenient to use the complex representative ψ of the real
field E,

ψ =

[
ψx
ψy

]
,

with ψx , Axeiϕx , ψy , Ayeiϕy ∈ C. Complex representatives are
not unique, but only determined to within a scalar phase factor.



The group SL(2,C)

Given our assumptions, a change of the transversal electric
field can be represented by ψ′ = J ψ or more explicitly as[

ψ′x
ψ′y

]
=

[
a b
c d

] [
ψx
ψy

]
with a, b, c, d ∈ C,

with ψ′, ψ Jones vectors and J a (non-singular) Jones matrix.

Generally, J ∈ GL (2, C), but since

0 = I′2−
(

Q′2 +U′2 +V′2
)
= |det J|2

(
I2 −

(
Q2 +U2 +V2

))
= 0,

we can take J ∈ SL (2, C) , {M ∈ GL (2, C) : det M = 1}.
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The whole picture: breadth
All related groups

A. B.
Group Pol. Space
Spin+ (1, 3) H2

Spin+ (3, 1) R4

SV (2) (Cl2,0)
2

Sp (2, C) C2

SL (2, C) C2

Spin (3, C) C3

2→1−→

Group Pol. Space
SO+(1, 3) R1,3

SO+(3, 1) R3,1

SMöb (2) C∪ {∞}
CS2 S2

PSL(2, C) CP1

SO(3, C) C3

' : isomorph ' : isomorph



The whole picture: depth
Group representations

A group is usually represented as operators acting on a space.

• Group elements are often represented, e.g., as matrices.

• These matrices act on column vectors, which live in the
representation space.

• Representations are classified by their spin.
• SL (2, C) (irreducible) representations are characterized by

a couple of half integers
(n1

2 , n2
2

)
, n1, n2 ∈N.

Interesting SL (2, C) representations:

•
( 1

2 , 0
)

: Jones calculus

•
( 1

2 , 0
)
⊕
(
0, 1

2

)
: A new calculus...

•
( 1

2 , 1
2

)
: Stokes vectors with (a restricted) Mueller calculus
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A new polarization calculus
Based on:

• Any partially polarized light beam can be decomposed (in
infinitely many ways) as the incoherent sum of two fully
polarized beams.

• Using two Jones vectors, one transforming regularly and
the other transforming as an opposite polarization state.

Transformation (with ad− bc = 1 and z complex conjugation):
ψ
′(1)
x

ψ
′(1)
y

ψ
′(2)
x

ψ
′(2)
y

 =


a b 0 0
c d 0 0
0 0 d −c
0 0 −b a




ψ
(1)
x

ψ
(1)
y

ψ
(2)
x

ψ
(2)
y

 .

↪→ Can represent partially polarized light!
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Vectorial Radiative Transfer theory
Consequences

Some conclusions related to VRT:

• Infinitely many formulations of VRT are possible!

• The mathematics help us to understand and solve the
equation.

Example.
Simplest VRT model: Lambert-Beer law with polarization.
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Vectorial Radiative Transfer theory
Lambert-Beer law with polarization

Equation of VRT in its simplest form:

dS
ds
= −ES,

with S : Stokes vector, E : Extinction matrix, s : distance.

Standard solution method is by exponentiation. Formally,

S (s) = exp (−Es) S (0) .

Generalized Lambert-Beer law, now including polarization.

The mathematics tell us that:
(i) E is an element of a Lie algebra,
(ii) exp (−Es) is an element of a Lie group.
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Vectorial Radiative Transfer theory
Lambert-Beer law with polarization

Obtaining the solution requires care!

• Complication: one has to use (non-commutative) Lie
algebra.

• Pitfalls: e.g., for the Lorentz group: disconnected group,
non simply-connected identity group component.

• Method: use tricks from mathematics and quantum
physics.
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The End

�
THANK YOU
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