Group Theoretical Aspects of Electromagnetic Polarization and Radiative Transfer Theory

Ghislain R. Franssens

Belgian Institute for Space Aeronomy Ringlaan 3, B-1180 Brussels, Belgium

1st COST-Polarisation WG Meeting, 07-09/05/2012

Subject

Electromagnetic polarization is much more then Stokes vectors and Jones or Mueller calculus...

Subject

Electromagnetic polarization is much more then Stokes vectors and Jones or Mueller calculus...

Polarization is considered from a mathematical point of view. In particular, the underlying group theoretical aspects are exhibited.

Subject

Electromagnetic polarization is much more then Stokes vectors and Jones or Mueller calculus...

Polarization is considered from a mathematical point of view. In particular, the underlying group theoretical aspects are exhibited.

Assumptions on the medium in which light travels:

- Linear
- Isotropic
- Reciprocal

What is a group ?

A group is:

- a non-empty set S

What is a group?

A group is:

- a non-empty set S
- with a binary operation $\times: S \times S \rightarrow S$

What is a group?

A group is:

- a non-empty set S
- with a binary operation $\times: S \times S \rightarrow S$
- in which \times is associative

What is a group?

A group is:

- a non-empty set S
- with a binary operation $\times: S \times S \rightarrow S$
- in which \times is associative
- and a unity element $1 \in S$ such that $g \times 1=g=1 \times g$, $\forall g \in S$,

What is a group?

A group is:

- a non-empty set S
- with a binary operation $\times: S \times S \rightarrow S$
- in which \times is associative
- and a unity element $1 \in S$ such that $g \times 1=g=1 \times g$, $\forall g \in S$,
- and $\forall g \in S$ exists an invers element $g^{-1} \in S$ such that $g \times g^{-1}=1=g^{-1} \times g$.

What is a group?

A group is:

- a non-empty set S
- with a binary operation $\times: S \times S \rightarrow S$
- in which \times is associative
- and a unity element $1 \in S$ such that $g \times 1=g=1 \times g$, $\forall g \in S$,
- and $\forall g \in S$ exists an invers element $g^{-1} \in S$ such that $g \times g^{-1}=1=g^{-1} \times g$.

What is a group?

A group is:

- a non-empty set S
- with a binary operation $\times: S \times S \rightarrow S$
- in which \times is associative
- and a unity element $1 \in S$ such that $g \times 1=g=1 \times g$, $\forall g \in S$,
- and $\forall g \in S$ exists an invers element $g^{-1} \in S$ such that $g \times g^{-1}=1=g^{-1} \times g$.

Our group elements will be polarization transformations, usually represented by matrices.

Example of a group

Unimodular group in one dimension:
$U(1) \triangleq\{z \in \mathbb{C}:|z|=1\}$ with $\times:$ complex multiplication.

Example of a group

Unimodular group in one dimension:

$$
U(1) \triangleq\{z \in \mathbb{C}:|z|=1\} \text { with } \times: \text { complex multiplication. }
$$

Three observations:
(i) The elements can be written as

$$
e^{i \theta}, \theta \in \mathbb{R}
$$

(ii) The resulting parameter, $\theta_{1}+\theta_{2}$, is an analytic function of θ_{1} and θ_{2},

$$
e^{i\left(\theta_{1}+\theta_{2}\right)}=e^{i \theta_{1}} e^{i \theta_{2}}
$$

(iii) The set U (1) describes a circle in \mathbb{C},

$$
|z|=1 \Leftrightarrow x^{2}+y^{2}=1,(z=x+i y)
$$

Example of a group

Unimodular group in one dimension:

$$
U(1) \triangleq\{z \in \mathbb{C}:|z|=1\} \text { with } \times: \text { complex multiplication. }
$$

Three observations:
(i) The elements can be written as

$$
e^{i \theta}, \theta \in \mathbb{R}
$$

(ii) The resulting parameter, $\theta_{1}+\theta_{2}$, is an analytic function of θ_{1} and θ_{2},

$$
e^{i\left(\theta_{1}+\theta_{2}\right)}=e^{i \theta_{1}} e^{i \theta_{2}}
$$

(iii) The set U (1) describes a circle in \mathbb{C},

$$
|z|=1 \Leftrightarrow x^{2}+y^{2}=1,(z=x+i y)
$$

Such groups are called Lie groups.

Transversal electric field

The transversal electric field \mathbf{E}, of a plane harmonic electromagnetic wave with pulsation ω, wavenumber k and propagating in the positive \mathbf{u}_{z}-direction, is of the form

$$
\mathbf{E}=A_{x} \cos \left(k z-\omega t+\varphi_{x}\right) \mathbf{u}_{x}+A_{y} \cos \left(k z-\omega t+\varphi_{y}\right) \mathbf{u}_{y}
$$

with amplitudes $A_{x} \geq 0, A_{y} \geq 0$ and phases $\varphi_{x}, \varphi_{y} \in \mathbb{R}$.

Transversal electric field

The transversal electric field \mathbf{E}, of a plane harmonic electromagnetic wave with pulsation ω, wavenumber k and propagating in the positive \mathbf{u}_{z}-direction, is of the form

$$
\mathbf{E}=A_{x} \cos \left(k z-\omega t+\varphi_{x}\right) \mathbf{u}_{x}+A_{y} \cos \left(k z-\omega t+\varphi_{y}\right) \mathbf{u}_{y}
$$

with amplitudes $A_{x} \geq 0, A_{y} \geq 0$ and phases $\varphi_{x}, \varphi_{y} \in \mathbb{R}$.
It is convenient to use the complex representative ψ of the real field E,

$$
\psi=\left[\begin{array}{l}
\psi_{x} \\
\psi_{y}
\end{array}\right]
$$

with $\psi_{x} \triangleq A_{x} e^{i \varphi_{x}}, \psi_{y} \triangleq A_{y} e^{i \varphi_{y}} \in \mathbb{C}$. Complex representatives are not unique, but only determined to within a scalar phase factor.

The group SL(2,C)

Given our assumptions, a change of the transversal electric field can be represented by $\psi^{\prime}=J \psi$ or more explicitly as

$$
\left[\begin{array}{l}
\psi_{x}^{\prime} \\
\psi_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
\psi_{x} \\
\psi_{y}
\end{array}\right] \text { with } a, b, c, d \in \mathbb{C}
$$

with ψ^{\prime}, ψ Jones vectors and J a (non-singular) Jones matrix.

The group SL(2,C)

Given our assumptions, a change of the transversal electric field can be represented by $\psi^{\prime}=J \psi$ or more explicitly as

$$
\left[\begin{array}{l}
\psi_{x}^{\prime} \\
\psi_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
\psi_{x} \\
\psi_{y}
\end{array}\right] \text { with } a, b, c, d \in \mathbb{C}
$$

with ψ^{\prime}, ψ Jones vectors and J a (non-singular) Jones matrix.
Generally, $J \in G L(2, \mathbb{C})$, but since
$0=I^{\prime 2}-\left(Q^{\prime 2}+U^{\prime 2}+V^{\prime 2}\right)=|\operatorname{det} J|^{2}\left(I^{2}-\left(Q^{2}+U^{2}+V^{2}\right)\right)=0$,
we can take $J \in S L(2, \mathbb{C}) \triangleq\{M \in G L(2, \mathbb{C}): \operatorname{det} M=1\}$.

The whole picture: breadth

All related groups
A.

Group	Pol. Space
$\operatorname{Spin}+1,3)$	\mathbb{H}^{2}
$\operatorname{Spin}+(3,1)$	\mathbb{R}^{4}
$S V(2)$	$\left(C_{2,0}\right)^{2}$
$\operatorname{Sp}(2, \mathrm{C})$	C^{2}
$\operatorname{SL}(2, \mathrm{C})$	C^{2}
$\operatorname{Spin}(3, \mathrm{C})$	C^{3}

$\simeq:$ isomorph

$\xrightarrow{2 \rightarrow 1}$	B.	
	Group	Pol. Space
	SO+ $(1,3)$	$R^{1,3}$
	$\mathrm{SO}_{+}(3,1)$	$R^{3,1}$
	SMöb (2)	$\mathbb{C} \cup\{\infty\}$
	CS ${ }^{2}$	S^{2}
	$\operatorname{PSL}(2, \mathrm{C})$	$C P^{1}$
	SO($3, \mathrm{C}$)	C^{3}

The whole picture: depth Group representations

A group is usually represented as operators acting on a space.

- Group elements are often represented, e.g., as matrices.

The whole picture: depth
 Group representations

A group is usually represented as operators acting on a space.

- Group elements are often represented, e.g., as matrices.
- These matrices act on column vectors, which live in the representation space.

The whole picture: depth
 Group representations

A group is usually represented as operators acting on a space.

- Group elements are often represented, e.g., as matrices.
- These matrices act on column vectors, which live in the representation space.
- Representations are classified by their spin.

The whole picture: depth

A group is usually represented as operators acting on a space.

- Group elements are often represented, e.g., as matrices.
- These matrices act on column vectors, which live in the representation space.
- Representations are classified by their spin.
- $S L(2, \mathbb{C})$ (irreducible) representations are characterized by a couple of half integers $\left(\frac{n_{1}}{2}, \frac{n_{2}}{2}\right), n_{1}, n_{2} \in \mathbb{N}$.

The whole picture: depth

A group is usually represented as operators acting on a space.

- Group elements are often represented, e.g., as matrices.
- These matrices act on column vectors, which live in the representation space.
- Representations are classified by their spin.
- $S L(2, \mathbb{C})$ (irreducible) representations are characterized by a couple of half integers $\left(\frac{n_{1}}{2}, \frac{n_{2}}{2}\right), n_{1}, n_{2} \in \mathbb{N}$.

The whole picture: depth

A group is usually represented as operators acting on a space.

- Group elements are often represented, e.g., as matrices.
- These matrices act on column vectors, which live in the representation space.
- Representations are classified by their spin.
- $S L(2, \mathbb{C})$ (irreducible) representations are characterized by a couple of half integers $\left(\frac{n_{1}}{2}, \frac{n_{2}}{2}\right), n_{1}, n_{2} \in \mathbb{N}$.

Interesting $S L(2, \mathbb{C})$ representations:

- $\left(\frac{1}{2}, 0\right)$: Jones calculus
- $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$: A new calculus...
- $\left(\frac{1}{2}, \frac{1}{2}\right)$: Stokes vectors with (a restricted) Mueller calculus

A new polarization calculus

Based on:

- Any partially polarized light beam can be decomposed (in infinitely many ways) as the incoherent sum of two fully polarized beams.
- Using two Jones vectors, one transforming regularly and the other transforming as an opposite polarization state.

A new polarization calculus

Based on:

- Any partially polarized light beam can be decomposed (in infinitely many ways) as the incoherent sum of two fully polarized beams.
- Using two Jones vectors, one transforming regularly and the other transforming as an opposite polarization state.
Transformation (with $a d-b c=1$ and \bar{z} complex conjugation):

$$
\left[\begin{array}{c}
\psi_{x}^{\prime(1)} \\
\psi_{y}^{\prime(1)} \\
\psi_{x}^{\prime(2)} \\
\psi_{y}^{\prime(2)}
\end{array}\right]=\left[\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & \bar{d} & -\bar{c} \\
0 & 0 & -\bar{b} & \bar{a}
\end{array}\right]\left[\begin{array}{c}
\psi_{x}^{(1)} \\
\psi_{y}^{(1)} \\
\psi_{x}^{(2)} \\
\psi_{y}^{(2)}
\end{array}\right] .
$$

A new polarization calculus

Based on:

- Any partially polarized light beam can be decomposed (in infinitely many ways) as the incoherent sum of two fully polarized beams.
- Using two Jones vectors, one transforming regularly and the other transforming as an opposite polarization state.
Transformation (with $a d-b c=1$ and \bar{z} complex conjugation):

$$
\left[\begin{array}{c}
\psi_{x}^{\prime(1)} \\
\psi_{y}^{\prime(1)} \\
\psi_{x}^{\prime(2)} \\
\psi_{y}^{\prime(2)}
\end{array}\right]=\left[\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & \bar{d} & -\bar{c} \\
0 & 0 & -\bar{b} & \bar{a}
\end{array}\right]\left[\begin{array}{c}
\psi_{x}^{(1)} \\
\psi_{y}^{(1)} \\
\psi_{x}^{(2)} \\
\psi_{y}^{(2)}
\end{array}\right] .
$$

\hookrightarrow Can represent partially polarized light!

Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

- Infinitely many formulations of VRT are possible!

Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

- Infinitely many formulations of VRT are possible!
- The mathematics help us to understand and solve the equation.

Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

- Infinitely many formulations of VRT are possible!
- The mathematics help us to understand and solve the equation.

Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

- Infinitely many formulations of VRT are possible!
- The mathematics help us to understand and solve the equation.

Example.
Simplest VRT model: Lambert-Beer law with polarization.

Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Equation of VRT in its simplest form:

$$
\frac{d S}{d s}=-E S
$$

with S : Stokes vector, E : Extinction matrix, s : distance.

Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Equation of VRT in its simplest form:

$$
\frac{d S}{d s}=-E S
$$

with S : Stokes vector, E : Extinction matrix, s : distance. Standard solution method is by exponentiation. Formally,

$$
S(s)=\exp (-E s) S(0)
$$

Generalized Lambert-Beer law, now including polarization.

Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Equation of VRT in its simplest form:

$$
\frac{d S}{d s}=-E S
$$

with S : Stokes vector, E : Extinction matrix, s : distance. Standard solution method is by exponentiation. Formally,

$$
S(s)=\exp (-E s) S(0)
$$

Generalized Lambert-Beer law, now including polarization.
The mathematics tell us that:
(i) E is an element of a Lie algebra,
(ii) $\exp (-E s)$ is an element of a Lie group.

Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Obtaining the solution requires care!

- Complication: one has to use (non-commutative) Lie algebra.

Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Obtaining the solution requires care!

- Complication: one has to use (non-commutative) Lie algebra.
- Pitfalls: e.g., for the Lorentz group: disconnected group, non simply-connected identity group component.

Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Obtaining the solution requires care!

- Complication: one has to use (non-commutative) Lie algebra.
- Pitfalls: e.g., for the Lorentz group: disconnected group, non simply-connected identity group component.
- Method: use tricks from mathematics and quantum physics.

The End

THANK YOU

