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Assumptions on the medium in which light travels:

e Linear
e Isotropic

e Reciprocal
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A group is:

e anon-empty set S

with a binary operation X : S xS — S

in which X 1is associative

and a unity element 1 € Ssuchthatgx1=¢=1xg,
Vg €S,

and Vg € S exists an invers element g1 € S such that
gxgl=1=g"xg

Our group elements will be polarization transformations, usually
represented by matrices.



Example of a group

Unimodular group in one dimension:

U(1) £ {z €C:|z| =1} withx : complex multiplication.



Example of a group

Unimodular group in one dimension:
U(1) £ {z €C:|z| =1} withx : complex multiplication.

Three observations:
(i) The elements can be written as

eis, 0 eR.

(i) The resulting parameter, 61 + 05, is an analytic function of 6;

and 65,

ei(@] -‘r@z) — €i91ei92'

(iii) The set U (1) describes a circle in C,

zZl=1e X+ =1,z=x+iy).



Example of a group

Unimodular group in one dimension:
U(1) £ {z €C:|z| =1} withx : complex multiplication.

Three observations:
(i) The elements can be written as

eis, 0 eR.

(i) The resulting parameter, 61 + 05, is an analytic function of 6;

and 65,

ei(@] -‘r@z) — €i91ei92'

(iii) The set U (1) describes a circle in C,
zZl=1e X+ =1,z=x+iy).

Such groups are called Lie groups.
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electromagnetic wave with pulsation w, wavenumber k and
propagating in the positive u,-direction, is of the form

E = A, cos (kz — wt + ¢,) uy + A, cos (kz — wt + %) uy,

with amplitudes Ay > 0, A, > 0 and phases ¢, ¢, € R.

It is convenient to use the complex representative 1 of the real

field E,
Yy
V= { ¥, ]

with i, £ Ayel?s, "% £ Ayei(”y € C. Complex representatives are
not unique, but only determined to within a scalar phase factor.
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The group SL(2,C)

Given our assumptions, a change of the transversal electric
field can be represented by ¢ = J ¢ or more explicitly as

Yol _fab)[¢] .
NERREE

with ¢/, ¢ Jones vectors and ] a (non-singular) Jones matrix.
Generally, ] € GL (2,C), but since
0=1%—(Q%+U?+Vv?) = |det)* (P - (Q*+ P +12)) =0,

we can take | € SL(2,C) = {M € GL(2,C) : detM = 1}.



The whole picture: breadth

All related groups

A. B.

| Group | Pol. Space | | Group | Pol. Space |
Spin, (1,3) | H? SO4(1,3) | R'A
Spin, (3,1) | R* SO, (3,1) | R
SV (2) (Cho)? | =2 [SMob(2) | €U (o)
Sp (2,C) C? CS? S?
SL(2,C) C? PSL(2,C) | CPT
Spin (3,C) | C° SO(3,C) | C?

~ : isomorph

~ : isomorph
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The whole picture: depth

Group representations

A group is usually represented as operators acting on a space.

¢ Group elements are often represented, e.g., as matrices.

e These matrices act on column vectors, which live in the
representation space.

¢ Representations are classified by their spin.

e SL(2,C) (irreducible) representations are characterized by
a couple of half integers (”2—1, ”2—2), ny,ny € N.
Interesting SL (2, C) representations:
° (%,O) : Jones calculus
e (2,0)®(0,3) : A new calculus...

e (%,3) : Stokes vectors with (a restricted) Mueller calculus
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A new polarization calculus

Based on:

e Any partially polarized light beam can be decomposed (in
infinitely many ways) as the incoherent sum of two fully
polarized beams.

e Using two Jones vectors, one transforming regularly and
the other transforming as an opposite polarization state.

Transformation (with ad — bc = 1 and z complex conjugation):

2(1) e b 0 0 w,g)

/

pi) a0 0 piV
/@) 00 d -c (2)
2 — a 2

— Can represent partially polarized light!



Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

¢ Infinitely many formulations of VRT are possible!



Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

¢ Infinitely many formulations of VRT are possible!

¢ The mathematics help us to understand and solve the
equation.



Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

¢ Infinitely many formulations of VRT are possible!

¢ The mathematics help us to understand and solve the
equation.



Vectorial Radiative Transfer theory

Consequences

Some conclusions related to VRT:

¢ Infinitely many formulations of VRT are possible!

¢ The mathematics help us to understand and solve the
equation.

Example.
Simplest VRT model: Lambert-Beer law with polarization.
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Lambert-Beer law with polarization

Equation of VRT in its simplest form:

ds
-~ __E
ds S

with S : Stokes vector, E : Extinction matrix, s : distance.
Standard solution method is by exponentiation. Formally,

S(s) =exp(—Es) S(0).

Generalized Lambert-Beer law, now including polarization.

The mathematics tell us that:
(i) E is an element of a Lie algebra,
(i) exp (—Es) is an element of a Lie group.
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Vectorial Radiative Transfer theory

Lambert-Beer law with polarization

Obtaining the solution requires care!
e Complication: one has to use (non-commutative) Lie
algebra.
e Pitfalls: e.g., for the Lorentz group: disconnected group,
non simply-connected identity group component.
e Method: use tricks from mathematics and quantum
physics.



The End

[ |
THANK YOU
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