



## Magnetic field diagnostics based on scattering line polarization at the solar limb

Marianne Faurobert
University of Nice-Sophia Antipolis
Lagrange Laboratory

The magnetic solar corona as revealed by polarimetry. Toulouse November 4-6, 2014

### Scattering polarization and Hanle effect observed above the solar limb at Themis

The primary miror of Themis is super polished (thanks to Jean Arnaud). In good seeing conditions off-limb observations are possible together with polarization measurements.



#### Observations at the solar limb





Molecular lines observed at Themis: Faurobert M. & Arnaud J., A&A 2002, 2003

(10 mn exposure time, photometric sensitivity: 10 -5)

#### Linear polarization spectrum 50" inside the limbe



# Measurement of the continuum polarization



X: measurements at Themis at various limb distances
\_\_\_\_: 1D radiative transfer calculations with VALC quiet sun model

# Molecular lines seen in emission above the limb



Fig. 1. I/I<sub>c</sub> recorded at one arcsec above the solar limb, I<sub>c</sub> the intensity of the continuum at disk center. Molecular lin of C<sub>2</sub> and MgH appear as emission lines, together with atom lines of Fe II, Fe I, Co I, Ni I and La II.



Fig. 2. |Q|/I<sub>c</sub> recorded at one arcsec above the solar limb, I<sub>c</sub> is the intensity of the continuum at disk center. We observe the scattering polarization of C<sub>2</sub> and MgH lines. The polarization of the atomic lines of Fe II, Fe I, Co I and La II is also marginally detected.

### Linear polarization Q/I measured in the molecular lines in emission 1" above the limb

| Branch $(J)$      | Q /I(%)                                                                                                              |
|-------------------|----------------------------------------------------------------------------------------------------------------------|
| Q (17)            | 3.96                                                                                                                 |
| P1 (30) + P2 (29) | 1.90                                                                                                                 |
| P3 (28)           | 1.91                                                                                                                 |
| P1 (29) + P2 (28) | 2.40                                                                                                                 |
| P3 (27)           | 2.55                                                                                                                 |
| P1 (28) + P2 (27) | 1.99                                                                                                                 |
| P3 (26)           | 1.87                                                                                                                 |
| Q (16)            | 4.54                                                                                                                 |
| P1 (27) + P3 (1)  |                                                                                                                      |
| P2 (26)           | 1.90                                                                                                                 |
| P3 (25)           | 1.26                                                                                                                 |
| P1(26) + P2 (25)  | 2.06                                                                                                                 |
|                   | Q (17) P1 (30) + P2 (29) P3 (28) P1 (29) + P2 (28) P3 (27) P1 (28) + P2 (27) P3 (26) Q (16) P1 (27) + P3 (1) P2 (26) |

## Eclipse observation. Flash spectrum Qu et al., 2009



### Modeling



Figure: Illustration of along-the-ray approach in spherical geometry

#### **NLTE** line formation

We want to model Stokes vector with consistent NLTE radiative transfer formalism:

- We modeled MgH and C<sub>2</sub> lines at 515.98 nm and 515.96 nm respectively.
- We use FALC and FALX quiet Sun models (Fontenla, Avrett & Loeser, 1990)
- 2 level atom formalism with presence of background continuum opacity

Milic & Faurobert, 2012

### Quiet sun 1D semi-empirical models



#### Line scattering/collisions



Figure: Height dependence of lower population of MgH transition, easterisks) and Wc (squares) parameters.

collisional depolarization decreases with height

Probability of collisional deexcitation decreases with height → line scattering probability increases with height

## Line center intensity FALC/FALX



Figure: Line center-to-continuum intensity ratio vs limb distance.

FALX model is cooler than FALC in the low chromosphere: more molecular emission

## Polarization at line center FALC Model/FALX model



Figure: Comparison of line center polarization between spherical and plane-parallel geometry for FALC solar model.

Figure: Comparison of line center polarization between spherical and plane-parallel geometry for FALX solar model.

Significantly higher polarization rates are expected in the « cool » chromosphere model

The observations by Faurobert& Arnaud (2002) are in better agreement with the cool model

Same for the eclipse observation by Qu et al. (2009)

### Hanle effect in the presence of magnetic fields with mixed polarities at small scales

No net rotation but depolarization Depolarization factor W<sub>H</sub>

Isotropic magnetic field

$$W_{H} = 1 - 0.4 \left( \frac{\Gamma_{H}^{2}}{1 + \Gamma_{H}^{2}} + \frac{4\Gamma_{H}^{2}}{1 + 4\Gamma_{H}^{2}} \right)$$

Horizontal field with random azimuth

$$W_{H} = 1 - 0.75 \left( \frac{4\Gamma_{H}^{2}}{1 + 4\Gamma_{H}^{2}} \right)$$

$$\Gamma_H = \frac{B}{B_c}$$
 Hanle parameter,  $W_H$  saturation when  $\Gamma_H \to \infty$ 

$$\langle W_H \rangle = \int_0^\infty W_H(B) f(B) dB$$
 is the observable quantity

Spatial average on the resolution element

PDF of magnetic strength

### Hanle effect of unresolved weak magnetic fields $C_2$ lines

Sensitivity domain of C2 lines to the Hanle effect:  $B \approx \frac{\Gamma_r}{0.88g_L} \approx 25G$ 

MgH lines are sensitive to stronger fields on the order of 60 G (differential Hanle effect )



Fig. 8. Limb polarization at the C<sub>2</sub> line center versus limb distance plotted for different values of a depth-independent turbulent magnetic field.

#### **Conclusion?**

- It seems that many lines show scattering linear polarization at the solar limb.
- Forward modeling may be used to test MHD models of the chromosphere (we need 3D models).
- Differential Hanle effect for different lines
- But the observational task is probably very difficult: we want to go very close to the limb (good seeing and good coronal sky)
- Are there instruments able to make a survey of the linear polarization of the flash spectrum from the UV to the IR?