Polarimetry through a Nasmyth

playing around with matrices
A. López Ariste

III

为
为

--

The ATST

A 4-m free-aperture solar telescope

CLAIM:

We can do polarimetry through uncalibrated mirrors provided that
-we know their symmetries

- we have some rough info on their properties

III

为
为

--

CLAIM:

We can do polarimetry through uncalibrated mirrors provided that
-we know their symmetries

- we have some rough info on their properties

PROBLEMS TO BE ADDRESSED

1. Crosstalk I \rightarrow Polarization. «The first column »
2. Existence of an optical solution: « Gadgetry »
3. Resiliance to errors: « Bettering classical calibration»

Pre-conditioning

 VS.
Post-conditioning

Can we modify the polarization state of light BEFORE it interacts with our telescope?

1. YES! Pre-conditioning is possible. Life is good
2. NO! Post-conditioning

Illustrating pre-conditioning

modulator (switch) in F2 $\lambda / 4$
fold mirror(s) with "eigenvectors" $\pm \mathrm{Q}$, instrumental polarization $\mathrm{I} \rightarrow \mathrm{Q}=\mathrm{q} \ll 1$, and cross-talk $\mathrm{U} \leftrightarrow \mathrm{V}$

Incoming polarization is modified before entering the telescope
measures v (and I) independent of mirror properties!

From F. Snik

Illustrating pre-conditioning

modulator (switch) in F2 $\lambda / 4$
fold mirror(s) with "eigenvectors" $\pm \mathrm{Q}$,
 instrumental polarization $\mathrm{I} \rightarrow \mathrm{Q}=\mathrm{q} \ll 1$, and cross-talk $\mathrm{U} \leftrightarrow \mathrm{V}$

From F. Snik

$$
M=\left(\begin{array}{cccc}
0.99 & -0.009 & 0 & 0 \\
-0.009 & 0.99 & 0 & 0 \\
0 & 0 & -0.935 & 0.323 \\
0 & 0 & -0.323 & -0.935
\end{array}\right)
$$

$$
M\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
1 \\
\pm 1 \\
0 \\
0
\end{array}\right)
$$

$$
M=\left(\begin{array}{cccc}
0.99 & -0.009 & 0 & 0 \\
-0.009 & 0.99 & 0 & 0 \\
0 & 0 & -0.935 & 0.323 \\
0 & 0 & -0.323 & -0.935
\end{array}\right)
$$

> Modulator: Converts V (or Q or U or any linear combination) into Q .

Q carries the information to be measured, undeemed by the pass of the mirror, ready to be analyzed by a separator

Pre-conditioning

Rotate the incoming polarization so that the Stokes parameter to be measured is projected onto the eigenvector of the system

RECIPE FOR EIGENPOLARIMETRY IN THE POINCARE SPHERE:

- Compute/Measure the 3×3 Mueller sub-matrix
- It corresponds to a rotation in the Poincaré sphere
-Per Euler's theorem, a rotation has a unique axis: Find it
- Rotate (modulator) your desired Stokes parameter into that axis.
-Recover it on the other side as Q

Modulator: Converts V (or Q or U or any linear combination) into a vector proportional to the eigenvector:

Puts V in the axis

Q carries your measure
U and V carry the dirty vector

Retarders rotate the vector in the Poincaré sphere.
We are dealing with 3D rotations.
We are dealing with $\mathrm{O}(3)$.

Any 3D rotation has an axis of rotation (Euler's theorem)
The eigenvector is actually an AXIS, any vector parallel to the AXIS, whatever its modulus, goes unchanged through the transformation

Rotation in 3-dimensions is an orthogonal transformation: If V goes into the eigenvector/axis, Q and U will go into orthogonal directions in the Poincaré sphere

Clean vectors and dirty vectors

$$
\tilde{M}\left(\begin{array}{c}
I_{ \pm} \\
\pm Q_{\text {loxo }} \\
\pm U_{\text {loxo }} \\
\pm V_{\text {loxo }}
\end{array}\right)=\left(\begin{array}{c}
I_{ \pm} \\
\pm Q \\
\pm U \\
\pm V
\end{array}\right)
$$

NON-ZERO!!!

$\mathrm{Q} \neq \mathrm{I}$ and $\mathrm{I}++\mathrm{Q}$ amd I-Q cannot be substracted, they are Contaminated by the dirty vector

Clean vectors and dirty vectors

$$
\tilde{M}\left(\begin{array}{c}
I_{ \pm} \\
\pm Q_{\text {loxo }} \\
\pm U_{\text {loxo }} \\
\pm V_{\text {loxo }}
\end{array}\right)=\left(\begin{array}{c}
I_{ \pm} \\
\pm Q \\
\pm U \\
\pm V
\end{array}\right.
$$

Polarization has already been measured, it is encoded in intensity The dirty vector is a result of bad rotation into the system eigenvector Simple BEAM-EXCHANGE solves The problem. A few photons are lost To the measure: diminution in
efficiency is to be expected

CALIBRATION ERRORS EQUAL TO LOSS OF PHOTONS AND NO ERROR IN POLARIMETRY

3x3 sub-matrix

$$
M=\left(\begin{array}{cccc}
0.977 & 0 & 0 & 0 \\
0 & 0.169 & -0.898 & 0.344 \\
0 & 0.898 & 0.022 & -0.383 \\
0 & 0.344 & 0.383 & 0.830
\end{array}\right)
$$

4 x 4 true Mueller matrix

$$
M=\left(\begin{array}{cccc}
0.977 & -0.013 & 0.010 & -0.003 \\
-0.013 & 0.169 & -0.898 & 0.344 \\
-0.010 & 0.898 & 0.022 & -0.383 \\
-0.003 & 0.344 & 0.383 & 0.830
\end{array}\right)
$$

Existence of axis in the 4×4 case

Facts and requirements:
-M is a valid Mueller matrix: it belongs to the $\mathrm{SO}^{+}(3,1)$ group, the group of the proper orthochronous

$$
\|\vec{I}\|=I^{2}-Q^{2}-U^{2}-V^{2}
$$ Lorentz transformation (perhaps closed with the limit algebra, but let us hope it is not required!)

The Minkowski space

Cone of (fully polarized) light

The cone of (fully polarized) light

Lorentz boost = de/polarizer, attenuators, dichroism

Q

The cone of (fully polarized) light

3-d rotation $=$ retardance

There are 3 conjugacy classes in the $\mathrm{SO}^{+}(3,1)$ group:

- Parabolic transformations : Unphysical

There are 3 conjugacy classes in the $\mathrm{SO}^{+}(3,1)$ group:

- Parabolic transformations: Unphysical

There are 3 conjugacy classes in the $\mathrm{SO}^{+}(3,1)$ group:

- Parabolic transformations: Unphysical
-Elliptic transformations $=3$-d rotations.
- Imaginary eigenvalues exp (ia)
- Unphysical eigenvectors (not valid Stokes
vectors) BUT valid axis of rotation

There are 3 conjugacy classes in the $\mathrm{SO}^{+}(3,1)$ group:

- Parabolic trancformations : Inphysical
- Elliptic transformations $=3$ ns.
- Imaginary eigeny
- Unphysical explor valid Stokes vectors ${ }^{\text {l }}$, ist

There are 3 conjugacy classes in the

 $\mathrm{SO}^{+}(3,1)$ group:- Parabonic transformations : Ynpiysicaí
- Elliptic transform ${ }^{+}$. $\exp ^{l o r^{2}}$ a rotations.
- Imaginar we just arues exp (ia)
- Un $3 \times 3{ }^{\text {casse }}$ Algenvectors (not valid Stokes
ve
-Loxodromic transformations
- Eigenvalues $\pm 1, \exp (a)$
- Eigenvectors $=$ Stokes vectors. In particular the eigenvalues ± 1 are associated to fully polarized vectors

-Loxodromic transformations
- Eigenvalues $\pm 1, \exp (a)$
- Eigenvectors = Stokes vectors. In particular the eigenvalues ± 1 are associated to fully polarized vectors

Recipe for 4 x 4 Mueller matrix

If your entrance/solar Stokes vector is a fully polarized vector, it can be rotated (modulator) so that the Stokes parameter Desired is parallel to the loxodromic axis of The Mueller matrix of the system.

The Stokes parameter will so travel un-deemed through The system and will exit as Q polarization in front of the analyzer

Recipe for 4 x 4 Mueller matrix

If your entrance/solar Stokes vector is a fully polarized vector, it can be rotated (modulator) so that the Stokes parameter

Solving the Xtalk problem (the first column) requires to fully polarize your entrance light.

It can be done, while keeping the information...
..but not today

Post-conditioning

Light polarizations cannot be modified before it enters our telescope

The Stokes vector cannot be projected onto the eigenvector of the system

Post-conditioning

Light polarizations cannot be modified before it enters our telescope
if the mountain won't come to Muhammad...

> Since you cannot project onto the eigenvector, change the eigenvector

$$
M=\left(\begin{array}{cccc}
0.99 & -0.009 & 0 & 0 \\
-0.009 & 0.99 & 0 & 0 \\
0 & 0 & -0.935 & 0.323 \\
0 & 0 & -0.323 & -0.935
\end{array}\right)
$$

$$
M\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
1 \\
0.173 \\
-0.916 \\
0.352
\end{array}\right)
$$

The particular case of a Nasmyth mirror

$$
M=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\lambda / 2$

