EVPA SWING MECHANISMS IN AGN JETS: STOCHASTIC VS. DETERMINISTIC

by Sebastian Kiehlmann on behalf of the Quasar Movie Project team

PI: Dr. Tuomas Savolainen

Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, 53121 Bonn, Germany

Outlook

- i. Introduction: AGN jets and EVPA swings
- ii. Random walks in Stokes-Q-U-space
- iii. EVPA swing mechanisms
 - iv. Helical motion model

AGN Jets

(

Fig. 1: Sketched Active Galactic Nucleus

AGN Jets

(

Fig. 1: Sketched Active Galactic Nucleus

AGN Jets

6

(C

Fig. 1: Sketched Active Galactic Nucleus

AGN Jets

(

Fig. 1: Sketched Active Galactic Nucleus

Fig. 2: Sketched spectral energy distributions of a blazar

EVPA swings

object	EVPA rotation	time interval	explanation	reference
OJ 287	120 °	7 d	Helical magnetic field	Kikuchi et al., 1988
BL Lac	240 °	5 d	Helical magnetic field	Marscher et al., 2008
PKS 1510+089	720 °	50 d	Helical magnetic field	Marscher et al., 2010
3C279	ٹ 300 °	60 d	Helical magnetic field	Larionov et al., 2008
3C279	ひ 208 °	12 d	Bent jet	Abdo et al., 2010
−50 500 - % & ∘ 400 - 300 - 100 - 0 -		808 000	See and B an	of and a constant of a constan
52	200 54	00 5 JD-	600 5800 2450000 [d]	6000
SEBASTIAN KIEHLMA MAX-PLANCK INSTI	ann, DiplPhys. tut für Radioastronomie,	BONN		4

II. Random walk:

randomized Stokes parameters

For each cell $i \in [1, N]$: $q_i = \mathcal{U}(-1, +1)$ $u_i = \mathcal{U}(-1, +1)$ $Q_{i} = \frac{q_{i}}{\sqrt{q_{i}^{2} + u_{i}^{2}}} \cdot m_{l,\max}$ $U_{i} = \frac{u_{i}}{\sqrt{q_{i}^{2} + u_{i}^{2}}} \cdot m_{l,\max}$

 $m_{l,\max} = 75 \%$

T.W. Jones et al. 1985, ApJ F. D'Arcangelo et al. 2007, ApJ

II. Random walk:

simple and shock RW process

Shock random walk process:

II. Random walk:

parameters

Vary:

Measure:

N_{cells} Number of cells Variation rate n_{var} $\langle m_l \rangle$ Polarization mean $\sigma(m_l)$ Polarization variation $\Delta \chi$ **EVPA** swing amplitude Variation estimator S Shifting consistency N

IV. EVPA swing mechanisms:

Thick-to-thin-transition

Swing amplitude: $\Delta \chi = 90^{\circ}$

for details: Ioannis Myserlis presentation

IV. EVPA swing mechanisms:

Two/multi-component model

MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

IV. EVPA swing mechanisms: Helical motion

Fig. 6.1:

 t_2

Sketched jet and

B-field geometry,

 t_1

EVPA rotation

Ref.: e.g. Marscher et al., 2008, Nature

Helical motion of an emission feature in a helical magnetic field

v. Helical motion model:

parameters

Motion and geometric param	eters:	
Acceleration	a/c	$[d^{-1}]$
Begin acceleration zone	^z ba	$[R_S]$
End acceleration zone	<i>z</i> ea	$[R_S]$
Downstream Lorentz factor	$\Gamma_{z,0}$	
Initial angular velocity	$\overline{\omega}_0$	[°/d]
Initial radial position	r_0	$[R_S]$
Initial angular position	$arphi_0$	[°]
Opening index	$ ho \leq 1$	
Opening offset	z_0	$[R_S]$
Viewing angle	θ	[°]
Jet angle	η	[°]
Magnetic field parameters:		
Magn. field pitch angle	b	[°]
Component intrinsic flux dens	ity:	
Intr. flux density	f_{ν}^{intr}	[mJy]
Spectral index	α =	= 0.7

v. Helical motion model:

Single component

v. Helical motion model:

parameters

Angular momentum conservation

Relativistic aberration

Time dilation: cosmological, motion

Polarized background:							
Background flux dens	sity	$f_{ u}^{bg}$	[mJy]				
Background EVPA		χ^{bg}	[°]				
Background polarizat	ion	₽ ^{bg}	[%]				
Component polarizat	P ^{comp}	[%]					
Constants:							
SMBH mass $M_{SMBH} = 8.6 \cdot 10^9 M_{\odot}$							
Redshift	Z	= 0.5362	2				

Motion and geometric parameters:							
Acceleration	a/c	$[d^{-1}]$					
Begin acceleration zone	<i>z</i> ba	$[R_S]$					
End acceleration zone	zea	$[R_S]$					
Downstream Lorentz factor	$\Gamma_{z,0}$						
Initial angular velocity	ϖ_0	[°/d]					
Initial radial position	r_0	$[R_S]$					
Initial angular position	$arphi_0$	[°]					
Opening index	$ ho \leq 1$						
Opening offset	Z_0	$[R_S]$					
Viewing angle	θ	[°]					
Jet angle	η	[°]					
Magnetic field parameters:							
Magn. field pitch angle	b	[°]					
Component intrinsic flux density:							
Intr. flux density	f_{v}^{intr}	[mJy]					
Spectral index	$\alpha = 0.7$						

v. Helical motion model: Single component + background

Conclusions

Random walks:

- 3C 279: two EVPA rotation processes
 - Low-state: stochastic variation
 - Flaring state: deterministic variation

Helical motion in helical magnetic field model:

 Can explain two-directional EVPA swings as observed in 3C 279

Special thanks to the QMP collaborators:

T. Savolainen (PI), S.G. Jorstad, F. Schinzel, K.V. Sokolovski, I. Agudo, M. Aller, I. Berdnikov, V. Chavushyan, L. Fuhrmann, M. Gurwell, R. Itoh, J. Heidt, Y.Y. Kovalev, T. Krajci, O. Kurtanidze, A. Lähteenmäki, V.M. Larionov, J. León-Tavares, A.P. Marscher, K. Nilson, the AAVSO, the Yale SMARTS project and all the observers.

SK was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Max Planck Institute for Radio Astronomy in cooperation with the Universities of Bonn and Cologne.

Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, and NNX12AO93G.

We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

Appendix

A. **nπ-ambiguity:** Shifting methods

$$\Delta \mathbf{X}_i = |\mathbf{X}_i - \mathbf{X}_{i-1}|$$

$$-\sqrt{\sigma^2(\mathbf{X}_i) + \sigma^2(\mathbf{X}_{i-1})}$$

if $\Delta X_i > 90^\circ$

$$X_{ref,i} = \langle [X_{i-1-N}, X_{i-1}] \rangle$$
$$N = 1, 2, 3, \dots$$

$$|\mathbf{X}_i - \mathbf{X}_{ref,i}| > 90^\circ$$

$$\mathbf{X}_{mod,i} = \mathbf{X}_i \pm \mathbf{n} \cdot \mathbf{180}^\circ$$

B. Curve smoothness:

Variation estimator

