Omicron Ceti (Mira) in the UV

Atmospheric Dynamics in Mira Stars: A Spectropolarimetric Insight

Nicolas Fabas 07/05/2014

Meeting of the Working Group 2 on **Theory & Modelling of polarisation in astrophysics** Prague, Czech Republic, 5-8 May, 2014

- 1. Mira stars
- 2. Spectropolarimetric Survey of Mira Stars
- 3. Learning from Solar Spectropolarimetry
- 4. Conclusions and Perspectives

Mira stars

Light curve from the *American Association of Variable Stars Observers*

Evolutionary Tracks off the Main Sequence

Reid & Menten 1997

Spectropolarimetric Survey of Mira Stars

<u>The NARVAL</u> <u>spectropolarimeter</u>

Light curve : July 2007 to February 2010 (AAVSO)

<u>3rd cycle : Hδ</u>

Detection : $3^*\sigma \checkmark$

Fabas et al. 2011

<u>3rd cycle : Hδ</u>

Fabas et al. 2011

Link polarization-shock wave

1 – PhD work: we realize that there is a link between shock/atm.dyn. and the polarization

2 – Next step: how solar physics can help:
influence of atm.dyn. and MF on the linear
polarization, Hanle effect, results in Fabas et al.
2014

3 – Detection of MF in Mira stars that are related to shocks Lebre et al 2014

Learning from Solar Spectropolarimetry

Anisotropic illumination

 \rightarrow imbalance in the sublevels of one given transition

 \rightarrow linear polarization

Hanle effect: A magnetic field can modify these populations and thus the polarization in the spectral lines.

The case of the Cal 4227Å line

Used to study the solar chromosphere

Scattering + Hanle effect

(1) B=15G, $\theta_B=125^\circ$, $\chi_B=56^\circ$ 1.0 0.8 50.6 0. 0.20.0 0.3 0.2 0.1 2/1(%) -0.0-0. -0.2-0.30.3 0.2 0.1 1/1(%) -0.0-0.-0.2-0.30.3 0.2 0.1 (%)1// -0.0-0. -0.24226.0 4226.5 4227.0 4227.5 Wavelength (Å)

Anusha et al. 2011

The Cal 4227Å line in Mira stars

Omicron Ceti (φ=1.00)

Chi Cygni (q=0.94)

Fabas et al. 2014 (to be published)

Solar case	Mira case
 Scattering region not extended: negligible curvature low anisotropy → linear polarization rate: ~0.1% 	Scattering region very extended: - important curvature - high anisotropy → linear polarization rate: 1 to 10 %
Thousands of small convective cells	Few giant convective cells (Hoefner et Freytag 2008) → global non-sphericity, non- cancelation of linear polarization

First detection of a surface magnetic field in the Mira star chi Cygni

<u>Spectral type</u>: S6 to S10 <u>Pulsating period</u>: 400 days

So far, magnetic field measured in the <u>circumstellar</u> envelope with masers.

Vlemmings 2011

LSD method: averaging over 14,000 atomic lines per sequence, with 174 V sequences

|B_L|=0.25 G

Previous detection in the CSE of chi Cyg by Herpin et al. 2006

Lèbre et al. 2014

X Link with Atmospheric Dynamics

- **Presence of Surface Magnetic Field**
- Potential of Linear Polarization to be Exploited
- ★ Molecular lines to be considered
- **Complementarity with Interferometry**