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The Solar atmosphere

One-dimensional chromospheric atmospheres
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Figure: Temperature structure and the thermalization parameter in
one-dimensional FAL atmospheres showing the nature of chromosphere
(Fontenla et al. 1996). (This figure is reproduced from Anusha et al.
2010).
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PRD in line scattering

Observed Spectrum

Ca II K at 3933 A

o Partial frequency redistribution
i (PRD) in line scattering =
s i correlations exist between the
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frequencies of incident and scattered
photons. PRD is represented by two
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oaf ] types of functions, namely, r1 and

3928 Sgﬂﬂwnvcliizih 3934 3936 TIII .

- A @ PRD becomes necessary to model

lgure: Ca 1 K line at 3933 lines such as Ca 11 K at 3933 A or
observed near the limb (using . ]
ZIMPOL Il at KPNO, USA by Ca 1 4227 A with strong linear
J. O. Stenflo and others.) ot : : : :

olarization signals in the line wings.

Credit: Dr. R. Holzreuter. J ) P g g v



Multi-dimensional polarized transfer

@ The transfer calculations that we discuss here are done using
two-level atom PRD scattering theory of Domke &
Hubeny (1988) and Bommier (1997a,b) respectively for
resonance scattering including collisions and the Hanle effect.

The transfer equation

— Q.VIFr,Q1) = [I(r,Q ) — S(r,Q,1)],

Rtot 7“,93)

o I =(I,Q,U)T - Stokes vector, S - Source vector.

@ r = (x,y,z) - position vector of the ray (2), kot - total
opacity, x - frequency in reduced units.




PRD in modeling the scattering polarization

Ca 14227 A line at near disc center

Forward scatt. poln.

(1) B=15G, 0,=125° y,=56° (2) B=15G, 0,=110°, x,=191°

modeling : Anusha et al.
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i sol s @ The theoretical Q/I,

U/I profiles are

S L computed from the
e Hanle effect and the
Ef V/I profiles from the

gzﬁl Zeeman effect.

@ In the left panels the
thin solid lines
represent the profiles

computed under the
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PRD in Multi-D transfer

Observed Spectrum

Ca Il K at 3933 A
el ] Modeling
Ei"""‘: Pl @ In Anusha & Nagendra (2013) we
oo I8 & applied PRD+muIti—D RT to the
ol Ca 11 line at 3933 A.
EZ: ] @ We used a composite atmosphere
o e was constructed using a 2D snapshot
e of the 3D MHD simulation of the
Figure: Ca 1 K at 3933A line photosphere combined with
observed near the limb representing the
(observed using ZIMPOL Il at chromosphere.

KPNO, USA by J. O. Stenflo
and others.) Credit: Dr. R.
Holzreuter.




Solar atmosphere approximation
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Figure: 2D spatial variation in photosphere and FALC in chromosphere.




Hanle effect in Ca 11 K line

MHD + FALC
(b) Temperature Log Tz.z) [K] Approximate 2D atmosphere

= | @ Horizontal variation of
1000 temperature below ~
0.65 Mm is due to MHD
effects.

@ Above ~ 0.65 Mm there
exists no horizontal
inhomogeneity.

Height Z (Mm)

@ The vertical variation of
B e temperature in these
0.00 096 1.93 2.9 3.87 4.83 5.90 X
Longth 1 (Mm) layers is the same as the
temperature variation

in 1D FALC atmosphere.

Figure: Temperature structure in the
chosen MHD+FALC atmosphere.




Hanle effect in Ca 11 K line

Contribution function (with Sy)

Far wing at 3928.15 A Near wing at 3933.09 A Line center at 3933.65 A
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Figure: Spatially averaged contribution functions at near-disk-center for different
wavelength points in the line.




Hanle effect in Ca 11 K line
Observed profile

The line formation heights (in Mm) Ca I K at 3933 A

A Near-limb  Near-disk-center . 39%V M/r:gu
3928.15 A 0.25 Mm 0.2 Mm
3933.09 A 0.65 Mm 05 Mm oo Mﬂw ,
393350 A 2.15 Mm 1.27 Mm [
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Figure: Line formation heights
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Ca II K at 3933 A
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2. Homogeneous polarization in the line core.

(20 G, 45°,225°).

3eae

on top surface

1. Inhomogeneous polarization in the line wings.

3. Periodic nature of solution in spatial direction.




Spatial variation

1.00000
0.81118
0.62236
0.43354

0.24472
0.05590

Length X (Mm)
o m @ s o

3915 3920 3925 3930 3935 3940 3945
Wavelength A ()

Q/1

2.50000
1.98681
1.47361
0.96042

0.44722
~0.06597

Length X (Mm)

3915 3920 3925 3930 3935 3940 3945
Wavelength A ()

u/1

Length X (Mm)

3915 3920 3925 3930 3935 3940 3945
Wavelength ) (

Figure: (u,¢) = (0.3,200°), (B,05,xB) = (20G,75°,225°).




Hanle effect in Ca 11 K line

Connection with other observations
Ca 14227 CCD image @ Spatial variations are observed

the wings of chromospheric
o0 Ca 1 4227 A line (Bianda et
al. 2003, Sampoorna et al.
2009), which the authors refer
to as the enigmatic wing
features.

ftaeraces)
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@ We find similar spatial

| inhomogeneities also in the

+oe5 pass Srpmme wings of Ca 11 K line, which is
e again a chromospheric line.

()

Figure: Observed using ZIMPOL I o Sueh .
taken at limb near a quiet region e = i )
(# =0.11). From Sampoorna et al. chromospheric lines can possibly

(eR)) be explained using the spatial
structuring of the atmosphere.
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Hanle effect in Ca 11 K line
Ca 11 K line CCD image Connection with other observations

@ Ca 11 K line at 3933 A shows
strong spatial variation in the
line core (Stenflo 2006). It is
due to :

@ spatially varying magnetic
fields (Hanle effect) and

9 spatial inhomogeneities in
the atmosphere itself.

, or the use of a model
atmosphere with spatial

3031 9032 3033 3934 3935 3938

s inhomogeneity in the
Figure: Limb observations taken at chromosphere may explain

KPNO using ZIMPOL II, in a quiet . : .
region. From Stenflo (2006); Credit: J. spatlally varying line core

0. Stenflo polarization.




Hanle effect in Ca 11 K line

Comparison with Observations

@ In Holzreuter et al. (2006), Holzreuter & Stenflo (2007a) and
Holzreuter & Stenflo (2007b) the authors study in detail, @/
in Ca 11 K line at 3933 A using different 1D solar model
atmospheres. They conclude that :

@ none of the can reproduce
the observed (I/1.,Q/I) at all p values.

@ by modifying the temperature structure they could find
optimum fits to the observed (I/1.,Q/I).

© multi-D MHD atmospheres, with multi-D transfer may be
necessary to fit the observations at different p values
simultaneously using a single MHD atmosphere.




nle effect in Ca 11 K line
del profiles and observations Comparison with observations

(a) Near limb observations

DG, 5%, T, o v @ Blue solid lines : Observations.

g o = @ Red dash-triple-dotted lines :
— emergent, spatially averaged
model profiles.

@ Black solid lines : spatially
resolved model profiles.

wie e ETT— @ Wing fit is reasonable since

” (B)Nean sk covter shurmianons line wings are formed below
gos ‘ i 0.65 Mm where the

ot e atmosphere is represented by
S E% _ TN MHD simulations.

4 @ Core fit is poor because the
L0 A A line forming layers are still

01p S N represented by 1D FALC part

o T of the composite model.
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Conclusions

PRD with polarized Multi-D transfer

@ This work represents the first attempt to use PRD in
polarized multi-D radiative transfer studies.

@ This work is an initial step towards more-realistic modeling of
the than using 1D atmospheres.
@ PRD as the line scattering mechanism is essential to

model strong chromospheric lines (the approximation of CRD
leads to nearly zero linear polarization in the line wings).

o The is the cause of
spatial inhomogeneities in the wings of the (Q/I.,U/I.)
profiles of strong chromospheric lines.




Conclusions

Multi-D polarized transfer with PRD

@ Our study clearly indicates that MHD structuring in the
chromosphere (as in the photosphere) is important to obtain
to the line core and the line wing
observations of (I/1.,Q/I.,U/I.) of the chromospheric lines
at all the lines of sight.

@ To achieve this goal, we need 3D MHD model
atmospheres, because only 3D models can properly
represent the solar chromospheric inhomogeneities.
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