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Asymptotic expansion of  the radiative transfer equation
approximate solutions for monochromatic scattering

valid if photons under go a large number of scatterings during their life-time

(1)  Interior problem 
radiation field  can be derived from a diffusion equation

(2) Boundary layer problem 

matching the interior and boundary layer 

boundary conditions for the diffusion equation and the boundary layer problem

semi-infinite , conservative, 1D medium
interior

boundary layer

conservative

i.e. mean free-path of photons << dimension of the medium

,  if the destruction probabilityor nonconservative media ✏ is small
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at leading order it is isotropic and unpolarized



Exact  and asymptotic results (monochromatic)
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Iem

 : optical depth ⌧

Rayleigh scattering 

Exact results semi-infinite 1D medium,  cylindrical symmetry, conservative

q, c

polarized radiation field : ~I = (Il, Ir) Chandrasekhar notation : l parallel, r perpendicular

Hl(µ), Hr(µ) H - functions for Rayleigh scattering; constants; F = Fl + Fr

 no incident radiation

 finite 1D medium withAsymptotic result

~n

✏ = 0 or ✏ 6= 0,

“Diffuse reflection” Incident radiation :
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internal source



Radiative transfer equation for Rayleigh scattering

Rayleigh phase matrixR(µ, µ0) =
3

4


2(1� µ2)(1� µ02) + µ2µ02 µ2

µ02 1

�

µ0, µ : direction of incident and scattered beams

kernel isotropic and unpolarized vectors :

L[~I(⌧, µ)] = ~V (⌧, µ)solutions of solvability condition ?

L̄l + L̄r = 0

Z +1

�1
L[~f(µ)] dµ = L̄ = [L̄l, L̄r] the components satisfy radiative flux constant

vl(⌧) + vr(⌧) = 0solvability condition :
Z +1

�1

~V (⌧, µ) dµ = ~v(⌧) = [vl(⌧), vr(⌧)]

~n

T 0⌧< <

Radiative transfer equation nonconservative : ✏ 6= 0

µ
@~I(⌧, µ)

@⌧
= (1� ✏)L[~I(⌧, µ)] + ✏[~I(⌧, µ)� ~Q(⌧)].

conservative scattering operatorL[~I(⌧, µ)] ⌘ ~I(⌧, µ)� 1
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R(µ, µ0)~I(⌧, µ0) dµ0

Properties of L

µ

µ0

1D slab

L[~f(µ)] = 0 fl(µ) = fr(µ) = f



Interior solution

scale of variation     ⇠ 1/
p
✏

 : low resolution description of radiation field Interior solution

rescaled optical depth ⌧̃ = ⌘⌧ with ⌘ =
p
✏

⌧̃ is order of unity for ⌧ order of the thermalization length

rescaled radiation field and asymptotic expansion
~I(⌧, µ) = ~I(⌧̃ , µ) = ~I0(⌧̃ , µ) + ⌘~I1(⌧̃ , µ) + ⌘2~I2(⌧̃ , µ) + . . .

rescaled radiative transfer equation

⌘µ
@~I(⌧̃ , µ)

@⌧̃
= (1� ⌘2)L[~I(⌧̃ , µ)] + ⌘2[~I(⌧̃ , µ)� ~Q(⌧̃)].

regrouping terms with the same order of ⌘ hierarchy of equations

the leading term is isotropic and unpolarized⌘0 L[~I0] = 0

⌘1 ~I1(⌧̃ , µ) = µ @~I0(⌧̃)/@⌧̃ + ~c1(⌧̃) with undetermined,  in the kernel of L~c1(⌧̃)

thermalization length ⇠

 At leading order the radiation field is unpolarized; the first order correction creates the polarization

The boundary layer analysis the boundary conditions for the diffusion equation

for an unpolarized source term ~Q(⌧̃) = (q(⌧̃), q(⌧̃))

solvability condition⌘2 diffusion equation
1

3

d2i0(⌧̃)

d⌧̃2
+ q(⌧̃)� i0(⌧̃) = 0

~I0(⌧̃ , µ) = ~I0(⌧̃) = (i0(⌧̃), i0(⌧̃))

⌘ is the expansion parameter



The boundary layer and asymptotic matching (I)

boundary condition for ~I int + ~Ib

if the incident radiation is zero on the boundaries of the medium

Asymptotic expansion :

Radiative transfer equation

boundary condition

the boundary layer variable : s = ⌧̃/⌘, s 2 [0,+1[

stretching in the direction perpendicular to the boundary

The radiation field in the boundary layer : ~I(⌧, µ) = ~I int(⌧̃ , µ) + ~Ib(s, µ)

~Ib(s, µ) ! 0, s ! 1

~Ib(s, µ) = ~Ib0 (s, µ) + ⌘~Ib1 (s, µ) + . . .

µ
@~Ibk(s, µ)

@s
= L[~Ibk(s, µ)], k = 0, 1

condition at infinity :

Coupling with the interior solution :

is applied to the sum~I(⌧, µ)

The optical thickness of the boundary layer is of  order in the interior variable⌘ ⌧̃

Diffuse reflection problems in a 1D  semi-infinite conservative medium

~Ibk (0, µ) = �~I intk (0, µ), µ < 0, k = 0, 1



⌘0 condition at infinity

(ii) boundary layer solution is zero at leading order

(i) boundary condition for the interior diffusion equation

emergent intensity

Improved interior solution

with the mixed type boundary condition ~J(0)� L
d ~J(⌧)

d⌧
|⌧=0 = 0

~I int0 (0) = 0

⌘1 condition at infinity with L a constant~I int1 (0, µ) = (µ+ L)@~I0(⌧̃)/@⌧̃ |⌧̃=0

The boundary layer and asymptotic matching (II)

solution of the diffuse reflection problem with
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Direction averaged field satisfies the diffusion equation ~J(⌧̃) =
1

2

Z +1

�1
[~I0(⌧̃) + ⌘~I1(⌧̃ , µ)] dµ

Ib0 (s, µ) = 0

~I int0 (0) = 0

~I inc1 (0, µ) = �I int1 (0, µ)

c = 0.873, q = 0.690, L = 0.71



Concluding remarks

Rii partial frequency redistribution : 

interior : space and frequency diffusion equation

boundary layer : diffuse reflection for monochromatic conservative scattering

emergent intensity

scalar case , 3-dimension

Frisch & Bardos 1981
asymptotic analysis at large frequencies

⌧
x

 : monochromatic optical depth
H(µ)  : Chandrasekhar function for conservative scattering

Rii with Rayleigh scattering 1D

results valid at  frequencies ⇠ a1/3✏�1/3 :  Voigt parametera
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3D Monochromatic and Rii Rayleigh scattering

same results as in the 1D case, with a 3D interior diffusion equation

, around 4-5 or more Doppler widths

no incident radiation

no incident radiation :
incident radiation ~Iext

 the emergent intensity is solution of a diffuse reflection problem with an incident radiation ~Iext

 the boundary condition for the interior diffusion equation is the value at infinity of the solution       
of the diffuse reflection problem
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