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Motivation

Discrepancy within calculations - Depolarization rates

Why are they different?, Potential interaction
¢ Ab initio calculations - Adiabatic representation

¢ Rayleigh-Schrodinger-Unsold (RSU)

Other sources

e Semiclassical theory
e Quantum dynamics theory
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Literature

Semiclassical - Pertubation theory potential interaction
Perturbation theory potentials - Single electron model
e Brueckner, Anstee & O’Mara, Derouich et al., ...
¢ Good agreement at intermediate-long distances

e Some anomalies could arise because of the effect of
avoided crossings and ionic effects
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Semiclassical - Pertubation theory potential interaction
Perturbation theory potentials - Single electron model
e Brueckner, Anstee & O’Mara, Derouich et al., ...
¢ Good agreement at intermediate-long distances

e Some anomalies could arise because of the effect of
avoided crossings and ionic effects

Quantum - Adiabatic potential interaction

o Kerkeni and us
» Discrepancies due to curve crossing effects
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Avoided crossings
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Adiabatic curves
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Born-Oppenheimer approximation | @7\
TI Schrodinger equation -HVY(r,R) = EV(r,R)

+ V f1, ey rne, R‘],..., R”N)

Ne Ne 1
sz—m Zm R| ZM

Nuclei are heavier so slower

Ty = Z L v2 neglected — V,(r, R) = paa(R)da(r; R)

Hedo(r; R) = V(R)¢a(r; R)
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Born-Oppenheimer approximation | @7\
Tl Schrédinger equation - HU(r, R) = EV(r, R)

WL
H= — 2m92j:v§,+ V(r, ..., In, Bi, .., Ray)

Ne Ne 1
ZZ|R—r| Zm R| Zm

Nuclei are heavier so slower

2
Tn = o Z . V2 neglected — V,(r, R) = vaa(R)da(r; R)

He¢o(r; R) = V(R)oa(r: R)

V(R) is the potential energy curve/surface
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Failing of Born-Oppenheimer approx. AL

Before considering Born-Oppenheimer approximation

Ws(r,R) = ¢pa(R)ea(r: R) with o5, satisfying

[(6a(r: R) Tuldar(r: BY) + V(R) — E] 1a(R) =

=D (dalr; B Tlbu (1 R)) s (R)
aFa!
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Failing of Born-Oppenheimer approx.

Before considering Born-Oppenheimer approximation

Z vaa(R)on(r; R) with 4, satisfying

[(@a(r: R)!TN!%( )>+V( R) — Elvsa(R) =

- Z ¢a |TN|¢0 (I’ R)>99/501 (R)
aFa!

BO considers: (¢.(r; R)| Tn|do (1 B) = daar T
wa(ra R) ~ Qoaa(R)¢a(r; R)
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Failing of Born-Oppenheimer approx. TIAR

Before considering Born-Oppenheimer approximation

ZW" )ou(r; R) with 5, satisfying

[(@a(r; R)ITNI%( :R)) + V(R) = Elpsa(R) =

=D {@alr; R) Tl (r; R)) 0500 (R)
aFa!

To evaluate kinetic couplings we use commutator [Ty, He]

(Dal[Tn, Hellbor) = (Vor = Va)(bal Ti|dar) + (Paldar) Ti Va

<¢a|[TN7 He]|¢o/>

(Balder) = 0 = {dalTnlder) = =/ 23
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Failing of Born-Oppenheimer approx. TIAR

Before considering Born-Oppenheimer approximation

Z* s (R)ou(r; R) with ¢4, satisfying

[(@a(r: F?)|TN|¢a( )>+ V(R) — El sa(R) =

— > " (pa(r; R)| Tnlow (r; R))¢sa (R)
a#a!

To evaluate kinetic couplings we use commutator [Ty, He]

<¢a|[TN7 e]|¢o/> = ( o T a)<¢a|TN|¢a’> + <¢a|¢a’>TNVa

(¢al[Tn, Hellpor)
(Vo/ - Va)

<()a‘(9(y/> =0— <¢o¢|TN|¢a’> =

couplings are large when electronic states are close
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Ab initio calculations LA

Main steps for the calculation of potential interaction
« Electronic structure package - Molpro, Molcas, Gaussian
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Ab initio calculations 1AW

Main steps for the calculation of potential interaction
e Electronic structure package - Molpro, Molcas, Gaussian

e Atomic basis set - Accuracy highly depends on good choice
Minimal — Split-valence — Polarization,Diffuse basis set -
It is always a compromise

o Electronic structure method - Dependent on study
HF, SCF, Cl, CC, DFT,... - It is as well a compromise

e Choice of active space - As well dependent on study
Core orbitals + Active orbitals

In our studies

e (Mg, Sr, H - Dunning basis, Ca - Ahlrichs "def2” basis,
Ba - Pseudopotential (10 e~) + basis

¢ Configuration Interaction (Cl) calculations
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Diabatization with MOLPRO VA

Quasi-diabatization method based on the maximization of
the overlap between states at a certain geometry with re-
spect to the overlap at a reference geometry

The method cannot be manipulate
Presence of ionic crossing state troubles the method
Diabatic states are not smooth

Expensive method - 2 steps:
- Maximization of overlap
- DDR to find transformation - Double number of points

Pros

e Method is automatic
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Diabatization with our method

Method
NACME are obtained as the solution of a second order difer-
ential equation which only requires the overlap matrix and its
derivatives
Cons

o Overlap matrix requires manipulation

e Presence of ionic crossing state troubles the method

e It requires the computation of many points

Pros

e Diabatic states are smooth
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Diabatic states
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Diabatic states - MOLPRO
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