Paschen-Back effect in hyperfine structure states of an atom including the effects of partial frequency redistribution

Sowmya K

Indian Institute of Astrophysics Bangalore, India

In collaboration with: Prof. K. N. Nagendra, Prof. J. O. Stenflo, and Dr. M. Sampoorna

Theory & Modeling of Polarization in Astrophysics Prague, 5–8 May, 2014

Scattering process

- * Frequency coherent scattering in atom's frame: $R_{\rm II}$.
- * The redistribution matrix R(x', n', x, n, B) describes how an incident Stokes vector is transformed into a scattered Stokes vector.

Hyperfine splitting in an atom

- * Hyperfine structure splitting (HFS) results from the interaction of the atomic nucleus with the electrons.
- * The coupling between the electronic angular momentum J and nuclear spin I_s results in F states satisfying $|J I_s| \le F \le |J + I_s|$.
- $\ast\,$ F-state interference is the quantum superposition of the hyperfine structure states.
- * The transitions among different F states obey the selection rule $\Delta F = 0, \pm 1.$
- * Spectral lines like Na I D_1 and D_2 , Ba II D_1 and D_2 etc in the Second Solar Spectrum are known to exhibit effects due to HFS.

Hyperfine interaction Hamiltonian

Hyperfine interaction Hamiltonian

Has dominant contributions from

Magnetic dipole term

 $\mathcal{H}_D = \mathcal{A}_J \mathbf{I_s} \cdot \mathbf{J}$

Hyperfine interaction Hamiltonian

Has dominant contributions from

and

 Magnetic dipole term

 $\mathcal{H}_D = \mathcal{A}_J \mathbf{I_s} \cdot \mathbf{J}$

 Electric quadrupole term

 \mathcal{B}_J
 $\begin{bmatrix} a_J(\mathbf{I_s} - \mathbf{I})^2 & 3/2 & -1/2 \end{bmatrix}$

$$\mathcal{H}_Q = \frac{DJ}{2I_s(2I_s - 1)J(2J - 1)} \left[3(\mathbf{I_s} \cdot \mathbf{J})^2 + \frac{3}{2}(\mathbf{I_s} \cdot \mathbf{J}) - I_s(I_s + 1)J(J + 1) \right]$$

and is diagonal in F. The separation $(\Delta \nu_F)$ between the F states can be calculated from its eigenvalues.

٦

Role of magnetic fields

Magnetic Hamiltonian

 $\mathcal{H}_B = \mu_0 (\mathbf{J} + \mathbf{S}) \cdot \boldsymbol{B}$

- * The magnetic field produces a shift $\Delta \nu_B$.
- * When $\Delta \nu_B \sim \Delta \nu_F$ the magnetic components of different lines start to cross leading to mixing of F states \implies Paschen-Back Effect.
- * Magnetic Hamiltonian can no longer be treated as a perturbation to the atomic Hamiltonian.

Magnetic field strength regimes

Zeeman effect regime

₩

 $\Delta\nu_B\ll\Delta\nu_F$

₩

Magnetic splitting is linear

Magnetic field strength regimes

Magnetic field strength regimes

The atomic system

- $\ast~$ Na I D_2 line transition between the $^2P_{3/2}$ and $^2S_{1/2}$ levels.
- $\ast\,$ Wavelength in air for this transition is 5889.95095 Å.

* The selection rules in the PB regime are $\Delta J = 0, \pm 1$ and $\Delta \mu = 0, \pm 1$.

¹Steck (2003)

Level-crossing

Sowmya K (ksowmya@iiap.res.in)

PBE in hyperfine structure states of an atom Ma

May 5, 2014

Earlier studies

- * Considered a flat-spectrum for the pumping radiation within the separation between the F states².
- * Landi Degl'Innocenti et al. (1997) used the concept of metalevels and included the effects PRD.
- * We follow the Kramers-Heisenberg scattering approach and derive the PRD matrix in the laboratory frame.

²Landi Degl'Innocenti (1975, 1978), Landi Degl'Innocenti & Landolfi (2004), Casini & Manso Sainz (2005)

Coherency matrix

* The probability amplitude for scattering from $a \to b \to f$ is calculated using the Kramers-Heisenberg formula

Coherency matrix

* The probability amplitude for scattering from $a \to b \to f$ is calculated using the Kramers-Heisenberg formula

* $|a\rangle = |J_a I_s i_a \mu_a\rangle$ with $N_{i_a} = 1 + J_a + I_s - \max(|\mu_a|, |J_a - I_s|).$

Coherency matrix

* The probability amplitude for scattering from $a \to b \to f$ is calculated using the Kramers-Heisenberg formula

$$\underbrace{a}_{b} \qquad \qquad [w_{\alpha\beta}]_{b} \sim \sum_{b} \frac{\langle f | \mathbf{r} \cdot \mathbf{e}_{\alpha} | b \rangle \langle b | \mathbf{r} \cdot \mathbf{e}_{\beta} | a \rangle}{\omega_{bf} - \omega - \mathrm{i}\gamma/2}$$

- * $|a\rangle = |J_a I_s i_a \mu_a\rangle$ with $N_{i_a} = 1 + J_a + I_s \max(|\mu_a|, |J_a I_s|).$
- * The scattering cross section is written as coherency matrix ${\bf W}$

* W contains the cross product between b and b' levels which represents the quantum interference.

- * W contains the cross product between b and b' levels which represents the quantum interference.
- $\ast~{\bf W}$ is transformed to the laboratory frame.

- * W contains the cross product between b and b' levels which represents the quantum interference.
- $\ast~{\bf W}$ is transformed to the laboratory frame.
- $\ast\,$ The Mueller matrix ${\bf M}$ is

 $\mathbf{M} = \mathbf{T}^{-1} \mathbf{W} \mathbf{T},$

and

scattered
$$\leftarrow \begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} = \mathbf{M} \begin{bmatrix} I' \\ Q' \\ U' \\ V' \end{bmatrix} \leftarrow \text{incident}$$

- * W contains the cross product between b and b' levels which represents the quantum interference.
- $\ast~{\bf W}$ is transformed to the laboratory frame.
- $\ast\,$ The Mueller matrix ${\bf M}$ is

 $\mathbf{M} = \mathbf{T}^{-1} \mathbf{W} \mathbf{T},$

and

* M is analogous to the redistribution matrix R.

Scattering geometry

- * β is the angle between the magnetic field vector and the scattered ray.
- * Incident ray is characterized by $(\theta', \chi') = (90^{\circ}, 0^{\circ}).$
- * Scattered ray is characterized by $(\theta, \chi) = (\beta, 90^{\circ}).$
- * The inclination and azimuth of the magnetic field are $(\theta_B, \chi_B) = (0^\circ, 0^\circ).$

Single 90° scattering of the unpolarized incident radiation.

Polarization diagram

Avoided level crossing³

- Because of the non-diagonal coupling * terms in the total Hamiltonian, the magnetic substates, instead of crossing, repel each other.
- As a result of avoided crossing we find

$$\left(\frac{Q}{I}\right)_{B=0}^{I_s\neq 0} < \left(\frac{Q}{I}\right)_{B\rightarrow\infty}^{I_s\neq 0}$$

³Bommier (1980) and Landi Degl'Innocenti & Landolfi (2004)

PBE in hyperfine structure states of an atom

May 5, 2014

Vertical magnetic field

Horizontal field parallel to the LOS

Conclusions

- * Using the Kramers-Heisenberg scattering approach we have derived the PRD matrix for PBE in a two-level atom with HFS.
- * Incomplete PBE causes non-linear splitting that leads to level-crossings which give rise to loops in the polarization diagrams.
- * Avoided level-crossing signatures are prominently seen when the magnetic field is vertical.
- * Asymmetric Stokes V profiles are a result of incomplete PBE, because of which net circular polarization remains non-zero.
- * These signatures point towards the possibility of using atomic PBE as a tool for the solar magnetic field diagnostics.

Thank You

Louis Karl Heinrich Friedrich Paschen

Ernst Emil Alexander Back

Sowmya K (ksowmya@iiap.res.in)

PBE in hyperfine structure states of an atom May 5, 2014